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Abstract
The processing of visual information for collision avoidance has been investigated at the biophysical level in several model
systems. In grasshoppers, the (so-called) η model captures reasonably well the visual processing performed by an identified
neuron called the lobular giant movement detector as it tracks approaching objects. Similar phenomenological models have
been used to describe either the firing rate or the membrane potential of neurons responsible for visually guided collision
avoidance in other animals. Specifically, in goldfish, the κ model has been proposed to describe theMauthner cell, an identified
neuron involved in startle escape responses. In the vinegar fly, a third model was developed for the giant fiber neuron, which
triggers last resort escapes immediately before an impending collision. One key property of these models is their prediction
that peak neuronal responses occur at a fixed delay after the simulated approaching object reaches a threshold angular size
on the retina. This prediction is valid for simulated objects approaching at a constant speed. We tested whether it remains
valid when approaching objects accelerate. After characterizing and comparing the models’ responses to accelerating and
constant speed stimuli, we find that the prediction holds true for the κ and the giant fiber model, but not for the η model.
These results suggest that acceleration in the approach trajectory of an object may help distinguish and further constrain the
neuronal computations required for collision avoidance in grasshoppers, fish and vinegar flies.

Keywords Looming · Collision avoidance · Giant fiber · LGMD · DCMD · Mauthner cell

1 Introduction

Visually guided collision avoidance has proved attractive to
study how the nervous system processes visual information
to generate escape behavior and to investigate the cognitive
processes implicated in the various escape strategies adopted
by prey (Evans et al. 2019). At the biophysical level, several
models have guided the study of collision-detecting neu-
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rons, helping to shed light on the coding and processing of
visual information by single neurons (Fotowat and Gabbiani
2011; Peek and Card 2016). Three distinct such models were
designed to fit data in grasshoppers, vinegar flies and gold-
fish (Hatsopoulos et al. 1995; von Reyn et al. 2017; Ache
et al. 2019; Preuss et al. 2006). These models were fitted
to reproduce responses to looming stimuli, i.e., stimuli that
simulate the approach of an object at constant speed toward
the potential prey (Schiff et al. 1962). A common feature
of these models is the prediction that neuronal responses
peak at a fixed delay before the approaching object reaches
a threshold angular size on the animal’s retina (Gabbiani
et al. 1999). Here, we ask whether the models make distinct
predictions for peak neural responses when presented with
different stimuli that simulate an approaching object with
an acceleration different from zero. Although the impact of
acceleration on the responses of collision-detecting neurons
has not been tested in a controlled setting, it is known to
be ethologically relevant in at least one case: the predation
of vinegar flies by damselflies (von Reyn et al. 2014). Our
results suggest that accelerating stimuli could shed further
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light on the biophysical processing of visual information for
collision detection and that they may help distinguish and
refine models of visually guided collision avoidance exper-
imentally. In a companion manuscript (Dewell et al. 2022),
we use the new stimuli and model predictions to gain fur-
ther insight in the neural computations underlying collision
avoidance behaviors of grasshoppers and goldfish. As more
is learned about the approach trajectories of predators, these
models may also help explain why specific predation strate-
gies are more successful than others.

The remainingof this paper is organized as follows:After a
brief explanation on methods and notation (Sec. 2), we intro-
duce looming stimuli (Sec. 3) and then the models describing
the response of collision-detecting neurons to such stimuli
(Sec. 4). In section 4, we also derive the main properties of
the models’ response to looming stimuli, illustrating their
similarities and differences, and we show that the models
can be mapped onto each other under an assumption that
preserves their main feature and that is required to describe
the response variability of collision-detecting neurons across
grasshoppers. In Sec. 5, we introduce stimuli approaching
with a constant acceleration (or deceleration) and show how
the various neuron models differ in their responses to such
stimuli. Section6 introduces a second set of stimuli approach-
ing with a time-dependent deceleration and shows how they
can also be used to distinguish the different models. We
conclude by a brief summary and discussion of the results
(Sec. 7).

2 Methods

For the η and κ models, algebraic results could be derived
by hand and were verified through MATLAB simulations.
For the giant fiber model, the predictions were tested using
MATLAB only as the model structure precludes pen-and-
paper derivations.

3 Looming stimuli

Classically, looming stimuli have been defined as the simu-
lation on a two-dimensional screen of objects approaching at
a constant speed on a collision course with an animal (Schiff
et al. 1962). For a solid square of half-size l, starting at an
initial distance, xi , the distance from the eye as a function of
time s ≥ 0 measured from movement onset is given by:

x(s) = vs + xi ,

where v < 0 is the approach speed. The angular size sub-
tended by the object at the eye depends on the ratio of the
object’s distance to its half-size. Hence, it will be useful to
define the normalized distance y(s) = x(s)/l so that

y(s) = s/γ + yi , yi = xi/l.

The constant γ = l/v < 0 (in units of time) fully charac-
terizes the approach trajectory. Solving y(s) = 0 yields the
time of collision, sc = −γ yi > 0 (Fig. 1A). If time is refer-
enced relative to collision, t = s − sc ≤ 0, then y(t) = t/γ
(Fig. 1B). The half-angle subtended by the object at the retina
is then obtained by trigonometry:

θ(t) = tan−1(l/vt) = tan−1(1/y(t)). (1)

It is an expanding function of y(t) that grows increasingly fast
toward collision time (Fig. 1C). The corresponding angular
velocity also increases nonlinearly, but eventually saturates
toward collision time (Fig. 1D). In several species, typical
values for the parameter γ leading to successful escape
behaviors range from−80 to−20ms (e.g., Preuss et al. 2006;
Fotowat et al. 2009; Yamamoto et al. 2003). In grasshoppers
and locusts, this range extends further, reaching −120 ms
(Fotowat and Gabbiani 2007). For the same species, a typ-
ical initial angular half-size θi = tan−1(1/yi ) of ∼ 0.75◦
will be below the spatial resolution of the eye (∼ 2◦) and
minimize transient onset neuronal responses at the start of
the approach.

4 Neural models of collision avoidance

Eta model In grasshoppers and locusts, a pair of iden-
tified neurons is chiefly responsible for jump and flight
escape behavior in response to looming stimuli. The first of
these neurons, the lobula giant movement detector (LGMD),
integrates excitatory, motion-sensitive inputs and inhibitory,
size-dependent inputs across one visual hemifield (O’Shea
and Williams 1974; Hatsopoulos et al. 1995; Rowell et al.
1977). Its postsynaptic target, the descending contralateral
movement detector (DCMD) neuron relays the LGMD spik-
ing activity to motor centers generating jump and flight
motor output (O’Shea et al. 1974; Fotowat and Gabbiani
2011). The DCMD acts as a faithful relay, with each LGMD
spike causing one and only one spike in the DCMD (O’Shea
and Williams 1974). The initial model used to describe the
LGMD/DCMD firing rate was the function

cηθ̇(t − δ)e−αθ(t−δ),

where cη is a scaling factor converting angular velocity (in
rad/s) to firing rate (in spk/s) (Hatsopoulos et al. 1995). This
function was later called the ‘η function’ (Sun and Frost
1998). According to this function, the angular velocity acts as
an excitatory term since it increases as the object approaches,
while the negative exponential acts as an inhibitory term, in
agreement with known physiological inputs to the LGMD
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Fig. 1 A Normalized distance of the approaching object, y(s), as a
function of time from approach onset for three γ = l/v values (−80,
−50 and −20 ms). The initial value, yi = 76.4, corresponds to an
initial half-angle of 0.75◦. The vertical arrow indicates collision time,
sc, for the fastest approach trajectory. B Same three approaches with

time referenced relative to collision (y(t = 0) = 0). C Corresponding
half-angle, θ(t), subtended by the object at the retina. Collision occurs
when θ = 90 degrees or 1.57 radians. D Corresponding angular veloc-
ity, θ̇ (t), during approach. In C and D, the inset magnifies the last 600
ms of approach

neuron (Rowell et al. 1977; Gabbiani et al. 2002; Peron et al.
2009; Zhu and Gabbiani 2016;Wang et al. 2018). As a result,
the η function predicts an initial increase in firing rate fol-
lowed by a peak and an eventual decrease when the negative
exponential term becomes vanishingly small (Fig. 2A). The
time of peak, tp, is determined by the equation dη/dt = 0
which leads to

θ̈ (t − δ) = αθ̇2(t − δ) (2)

(taking into account that exp(−αθ(t − δ)) �= 0). Using Eq.1
yields a linear relation between tp and the looming stimulus
parameter γ :

tp − δ = α

2
γ. (3)

Because the normalized distance is also a linear function
of time, with proportionality constant 1/γ , the normalized
distance at tp − δ, y(tp − δ) = α/2, is independent of γ .
Thus, the angle subtended by the stimulus at that time is also
independent of γ :

θ(tp − δ) = tan−1 2

α
. (4)

This prediction of a neuronal peak firing rate time occurring
a fixed delay (δ) after the looming stimulus has reached a
threshold angular size has beenverified in theLGMD/DCMD
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Fig. 2 A Angular size (top) and responses of the η model (bottom) to
the same three γ values as in Fig. 1. The parameter α = 9 corresponds
to a threshold half-angle of 12.5◦ (0.22 rad) and δ = 0 ms. The peak
value for γ = −20 ms has been normalized to one. B Corresponding

responses of the κ model, with the same normalization as in A. The
parameter β = 4.6 was selected to yield the same threshold half-angle
as inA (see Eq.9). The top inset depicts the definition of the kinematical
and angular parameters of the stimulus

neurons (Gabbiani et al. 1999) and in a number of neurons
classes across vertebrate and invertebrate species (e.g., Oliva
and Tomsic 2014; Temizer et al. 2015; Bennett et al. 2019;
Nakagawa and Hongjian 2010; Sato and Yamawaki 2014; de
Vries and Clandinin 2012).
Relation to earlier work In Gabbiani et al. (1999) and other
articles, the η model was formulated using the full stimulus
angle, θ f = 2 θ , see Fig. 2B, inset. Accordingly, the value of
the parameter α is halved, α f = α/2. Further, the angular
edge speed is one-half of the full angle expansion speed,
θ̇ f = 2θ̇ . Finally, the stimulus parameter used earlier was
l/|v| = −γ (> 0). The parameters selected here facilitate
algebraic calculations.
Additional properties of the etamodelThe peak value of the η

function scales inverselywith γ since for a looming stimulus,

θ̇ (t) = − 1

1 + y2(t)

dy

dt
= −

(
1

γ

)
1

1 + y2(t)
, (5)

and hence so does the value of η at peak time,

η(tp) = −
(
cη

γ

) (
1

1 + α2

4

)
e−α tan−1(2/α) (6)

(using Eqs. 1 and 4, with δ = 0; see Fig. 2A).
The η model also predicts a constant number of spikes

prior to collision independent of γ . To see this, note first that
if η(t) describes a neuronal firing rate, then the total number
of spikes prior to collision is given by

F = cη

∫ 0

−∞
θ̇ (t)e−αθ(t) dt .

For a looming stimulus, this quantity is independent of the
parameter γ . Namely, if γ2 = γ1/ρ, and yi (t) = t/γi , i =
1, 2, then y2(t) = y1(ρt), and consequently,

θ2(t) = θ1(ρt), θ̇2(t) = ρθ̇1(ρt)

(using Eqs. 1 and 5). Hence,

F(γ2) = cη

∫ 0

−∞
ρθ̇1(ρt)e

−αθ1(ρt) dt = F(γ1)

after a change of integration variables, t̃ = ρt . (with ρ > 0).

Extensions of the eta model The η model works well for
a restricted range of γ values, [−24;−4] ms (Hatsopou-
los et al. 1995). The model can be naturally extended
while preserving the result of Eq.4 by adding to it a static
(time-independent) nonlinearity, f , yielding the composed
function f (η(t)) (see Gabbiani et al. 1999, appendix 3).

Adequate fits to experimental LGMD/DCMD firing rate
data require an additional extension, by making the static
nonlinearity γ -dependent and dependent on whether the fit-
ted firing rate value lies before or after the peak time (see
Gabbiani et al. 1999, Figs. 12 and 13). This extension leads
to the following functional form:

f (t) =
{
fγ,0(η(t)) if t ≤ tp,

fγ,1(η(t)) if t ≥ tp,
(7)

where tp is given by Eq.3. This extended model has been
validated over the range γ ∈ [−50;−5] ms (Gabbiani
et al. 1999). With the insight of subsequent work (Peron and
Gabbiani 2009; Dewell and Gabbiani 2018a, b, 2019), the
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Fig. 3 ANonlinearities of Eq.11mapping κ into η and denoted by Lw0
and Lw−1, respectively (Lwi (κ) = sin2(θi (κ))e−αθi (κ), for i = 0,−1
and cκ = cη = 1). The green and black dotted lines are obtained by
mapping numerically κ(t) onto η(t) over their rising and falling phases,

respectively. The inset magnifies the middle portion of the curves. B
Time course of η(t) (cyan, γ = −50 ms) and mapping of κ(t) obtained
using Eq.11 (red and black)

dependence of the static nonlinearity on γ and on the rising,
resp. decaying, phase of the η function is to be expected given
the large number of ion channels with activity-dependent
kinetics present in the LGMD and shaping its firing rate.
These channels will affect differently the rising and decaying
phase of LGMDfiring due to their time-dependent activation
and inactivation kinetics.
Kappa model In goldfish, a different model was proposed to
describe the timecourse of themembranepotential in an iden-
tified pre-motor neuron, called the Mauthner cell in response
to looming stimuli (Preuss et al. 2006). In this model, the
membrane potential is a product of the stimulus angular size
by a negative exponential of angular size:

κ(t) = cκθ(t)e−βθ(t),

where we have omitted the time delay, δ, for simplicity. Just
as for the η model, the multiplication of θ by a negative
exponential of θ leads to a function that initially increases,
then peaks and eventually decays as time to collision nears
(Fig. 2B). As above, the peak time is found by setting the time
derivative of κ(t) equal to 0 and solving for tp. Taking into
account that θ̇ (t) �= 0 (see Fig. 1D) and exp(−βθ(t)) �= 0,
we obtain:

βθ(tp) = 1 or θ(tp) = 1

β
. (8)

CombiningEqs. 4 and 8 shows that theη and κ models predict
the same angular threshold size, provided that

1

β
= tan−1 2

α
. (9)

Note that this result remains valid for extensions of the
κ model by static nonlinearities similar to those discussed
above for the η model. The κ model was proposed by Preuss
et al. (2006) because it predicts a constant peak value for the
membrane potential,

κ(tp) = cκ

1

β
e−1, (10)

as observed experimentally (see Fig. 2B). In contrast, the η

function’s peak value scales inversely with γ (see Eq.6).
Equivalence of the eta and kappa models The η and κ mod-
els are equivalent in the sense that one can be mapped
onto the other via a γ -dependent and a rising/decaying
phase-dependent static nonlinearity, see Eq.7. Specifically,
provided Eq.9 holds, the following result transforms the κ

function into the η function for a looming stimulus:

η(t) = −cη

γ
·
{
sin2(θ0) e−αθ0 t ≤ tp,

sin2(θ−1) e−αθ−1 t ≥ tp,
(11)

where

θi = − 1

β
wi (−βκ(t)/cκ), i = 0,−1,

and w0 and w−1 are the 0th and 1st branches of the Lambert
W function, respectively (Fig. 3).
Note. The Lambert W function is a multivalued function,
defined as the inverse of the function z → zez , where z is
a complex number. It finds applications in the solution of
algebraic equations arising in a variety of scientific fields
(Corless et al. 1996).
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Proof. We need only consider the case cη = cκ = 1. We first
use Eqs. 5 and 1 to express θ̇ as a function of θ :

θ̇ (t) = − 1

γ

(
1

1 + 1
tan2(θ(t))

)
= − 1

γ

tan2(θ(t))

1 + tan2(θ(t))

= − 1

γ
sin2(θ(t)).

Let now κ = θe−βθ . We are looking for the solution, θ of
this equation. First set z = −βθ or θ = −z/β. The equation
to solve becomes

κ = − 1

β
zez ⇔ (−βκ) = zez . (12)

In our case, κ lies between 0 and 1
β
e−1 (see Eq. 10). Hence,

−βκ is real and lies between −e−1 and 0. Therefore, there
are two solutions to Eq.12, namelyw0(−βκ) andw−1(−βκ)

(Corless et al. 1996). The specific assignment of the 0th

branch to the rising phase of the κ(t) function is asserted by
comparing Eq.11 with its numerical solution (Fig. 3), thus
completing the proof.
Giant Fiber model This model is based on biophysical exper-
iments that characterized four neuronal inputs to the giant
fiber (GF) of Drosophila melanogaster, an identified neuron
involved in collision avoidance and escape behaviors. The
specifics of the model are briefly described here for com-
pleteness (further details can be found in, Ache et al. 2019;
vonReyn et al. 2017). It is formulated in termsof the full stim-
ulus angle and angular speed (i.e., 2θ and 2θ̇ in the notation
used here) and relies on the weighted sum of two excitatory
and two inhibitory inputs. Thus, the GF membrane potential
(Vm) is modeled as

vGF = wLC4 vLC4 + wLPLC2 vLPLC2 + wi1 vi1 + wi2 vi2,

with weights wLC4 = 1.62, wLPLC2 = 1.45, wi1 = 2.27
and wi2 = 1. The membrane potential of the LC4 neuron
encodes the (full) angular velocity:

vLC4 = c1 2θ̇ (t − δ1),

with c1 = 0.2567 · 10−3 mV/(deg/s) and δ1 = 19 ms. The
membrane potential of the LPLC2 neuron model is tuned as
a Gaussian for a specific logarithm of the full angular size:

vLPLC2 = c2e
−(log(2θ(t−δ2)−log(c3))2/(2c24),

with c2 = 1.7 mV, c3 = 42 deg, c4 = 0.52 (dimensionless)
and the delay δ2 = 19 ms. The first inhibitory input pro-
duces increased inhibition as the stimulus full angular size
increases:
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Fig. 4 Angular size (top) and responses of the GF model (bottom) to
the same three γ values as in Fig. 1. The bottom inset shows the static
nonlinearity mapping 2 θ to vi1

vi1 = c5 + c6
1 + e−(2θ(t−δ3)−c7)/c8

,

with c5 = −0.53mV, c6 = 0.59mV, c7 = 66 deg, c8 = −11
deg and δ3 = 37.5 ms. The second inhibitory input is also
tuned as a Gaussian for a specific full angular size:

vi2 = c9e
−(2θ(t−δ4)−c10)2/(2c211),

with c9 = −0.52 mV, c10 = 26 deg, c11 = 7.8 deg and δ4 =
11 ms. This composite model produces responses similar to
those of the η and κ model (Fig. 4). As in the η model, the
peak response depends on the parameter γ , though not as
strongly (compare Figs. 2A and 4).
Angular speed threshold model Like the constant angle pre-
dicted at peak time by the κ function, the function

f (t) = θ̇ (t)e−ξ θ̇(t)

results in a constant angular velocity at peak time, θ̇ (tp) =
1/ξ . Solving for the peak time using Eq.5 yields

t2p = −γ (ξ + γ )

fromwhichwe deduce that the following condition on ξ must
hold: ξ > −γ > 0 (given that t2p > 0). Solving for tp yields
the relation

tp = −√−γ (γ + ξ),

where the leading sign is selected by our use of negative times
prior to collision. The square root dependence is expected
from Sun and Frost (1998). We will not consider this model
further as it has not been documented experimentally.
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5 Nonzero acceleration stimuli

As explained in the previous section, the dynamics of the η,
κ and GF models for looming stimuli are indistinguishable
modulo a static nonlinearity (Eq.7), even though their func-
tional forms differ to match the biophysics of the neurons
they describe. In particular, when the models’ parameters
are appropriatelymatched, theywill predict the same angular
threshold size for the neuronal peak firing rate (or membrane
potential) in response to looming stimuli. This raises the
question of whether it is possible to design stimuli approach-
ing on a collision course that predict different peak response
times across the models. We describe here one such type of
stimuli that we call nonzero (constant) acceleration stimuli
(NZAs).
Approach with constant acceleration If an object approaches
with nonzero, constant acceleration its normalized distance
is described by

y(s) = ρ

2
s2 + s

γi
+ yi . (13)

In this equation, ρ = a/l is the normalized acceleration in
units of 1/time2, and 1/γi is the initial normalized speed (in
units of 1/time). Note that since y(s) > 0 decreases toward
collision, ρ < 0 represents an accelerating stimulus (because
the normalized distance decreases faster than for ρ = 0), and
vice versa for ρ > 0.

To compare neural model responses to an accelerating and
a looming stimulus with the same projected collision time,
sc = −γc yi , we need to select ρ such that

0 = ρ

2
s2c + sc

γi
+ yi . (14)

Solving for ρ yields

ρ(γc, γi , yi ) = − 2

γ 2
c yi

(
1 − γc

γi

)
. (15)

As expected, Eq.15 shows that ρ < 0 (acceleration) if
γi < γc < 0 resulting in an earlier collision time than that of
the looming stimulus with initial value γi . Conversely, ρ > 0
(deceleration) if γc < γi < 0. Further, Eq. 15 implies that
the collision time can be made arbitrarily close to s = 0 (by
enforcing γc → 0), leading to ρ → −∞. In contrast, there
is a maximal deceleration value ρM > 0 that still leads to
collision (s = 0). It is obtained by setting the discriminant
of the quadratic Eq.14 to zero, so that its two roots coin-
cide. This yields ρM = 1/(2γ 2

i yi ) and the corresponding
collision time (i.e., the double root of Eq.14) is given by
sc = −1/(γiρM ) = −2γi yi . Thus, the associated constant
speed looming stimulus trajectory has γc = 2γi . In other
words, a decelerating NZA stimulus cannot have an initial γi

value smaller than half that of the looming stimulus with the
same collision time.
Examples. Figure5A illustrates two NZAs with γi = −50
ms and γc = −20, and −80 ms, respectively. The corre-
sponding normalized accelerations are equal to −39.3 s−2

and 2.45 s−2, respectively. Note that the first trajectory is
part of an inverted parabola, while the second one is part of
an upright one. In both cases, the collision time sc is one of
the roots of the quadratic polynomial of Eq.13.
Comparison with insect free flight dataAlthough NZAs have
not yet been systematically used experimentally (but see
Sztarker and Rind 2014), acceleration plays a role in the
capture success of vinegar flies by damselflies (von Reyn
et al. 2014). In this work, acceleration leading to success-
ful capture is −1.2 mm/s2 (using our sign convention) for
γ = −15 ms ( Fig. 6b of von Reyn et al. 2014). In Fig. 6c
of the same article, deceleration leading to unsuccessful cap-
ture is equal to 0.6 mm/s2 for γ = −27 ms. Overall, the
range of accelerations reported in Fig. 6e of von Reyn et al.
(2014) ranges from -3mm/s2 to +1mm/s2 (note that a scal-
ing factor 10−3 is missing for the acceleration values in the
three panels of Fig. 6). Taking into account the half-size of
damselflies, 1.4mm (von Reyn et al. 2014), this corresponds
to normalized acceleration values between ρ = −2.14 and
0.71 1/s2.
Normalized distance factorization By construction, one root
of the quadratic polynomial in Eq.13 is the prescribed time
to collision, sc = −γc yi . The second root, obtained using the
solution formula for quadratic equations, is given by

s2p = γc yi
1 − γc/γi

(after using Eq.15). It corresponds to the positive square root
of the associated discriminant (hence the subscript ‘2p’, for
‘2nd root, positive’). Note that if γi < γc < 0 (acceleration)
then s2p < 0. If 2γi ≤ γc < γi < 0, then s2p > sc, as
expected (see Fig. 5A). Thus,

y(t) = ρ

2
(s − sc)(s − s2p).

Using this factorization, we may rewrite Eq.13 in terms of
time to collision,

y(t) = ρ

2
t(t − λ), (16)

where

λ = s2p − sc = γc yi
2γi − γc

γi − γc
. (17)

This factorization allows to determine analytically the peak
times of the κ and η models.
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Fig. 5 A The dashed lines depict looming stimuli with three γ values
(−80, −50 and −20 ms). The upright parabola (solid and dotted blue
continuation line) represents a decelerating stimulus with the same ini-
tial γ value (slope) as the looming stimulus represented by the dashed
red line, and the same time to collision as the looming stimulus rep-
resented by the dashed blue line. The inverted parabola represents a
similar, accelerating stimulus (solid and dotted yellow line). B Peak
times relative to collision, tp , predicted by the η and κ models as a
function of γ for looming stimuli and for NZAs (same parameters as

in Fig. 2). The inset magnifies the upper right part of the graph. C Cor-
responding peak threshold angles for NZAs predicted by the η and κ

models. The latter ones are also the threshold angles for looming stimuli
irrespective of model type. The left and right vertical axes give angle
values in radians and degrees, respectively. D Peak times of the GF
model as a function of γ for looming stimuli and NZAs. The linear fit
of looming peak times has a slope equal to α/2 = 2.47 and an intercept
δ = 21.3 ms (see Eq.3). The inset shows the threshold angle for both
stimulus types as a function of γ

Peak time of the kappa model According to Eq.8, θ(tp) =
1/β and since tan θ(t) = 1/y(t) (Eq. 1), the peak time is
determined by

y(t) = β̄, where β̄ = 1

tan (1/β)
. (18)

Using Eq.16, we obtain the equivalent condition for stimuli
with nonzero acceleration:

ρ

2
(t − λ)t = β̄, or t2 − λt − 2β̄

ρ
= 0. (19)

The two possible solutions are

t± = λ ± √
D

2
, D = λ2 + 8β̄

ρ
. (20)

If ρ is positive (deceleration), y(t) is an upright parabola and
its first crossing of the line y = β̄ is the correct solution.
Since λ = s2p − sc is positive,

√
D > λ > 0 and t− is the

correct solution. If ρ is negative, y(t) is an inverted parabola
and its second (rightmost) crossing with the line y = β̄ is
the correct solution. Since λ < 0, 0 <

√
D < −λ and t+ is

the correct solution. Multiplying both the numerator and the
denominator of either solution by ρ/2 and keeping track of
the signs yields the unified formula,

123



Biological Cybernetics (2023) 117:129–142 137

A B

-3000 -2000 -1000 0
0

50
(t

) 
(d

eg
)

-3000 -2000 -1000 0
0

50

no
rm

. d
is

t. 
(x

/l  
)

-3000 -2000 -1000 0
0

1

2

(t
)

10-3

-3000 -2000 -1000 0
time to collision (ms)

0

0.05

0.1

(t
)

30 60 90 120 150
24

25

26

pe
ak

 ti
m

e 
re

l. 
to

 s
ta

rt
 (

m
s)

 

30 60 90 120 150

200

300

400

30 60 90 120 150

angular speed (deg/s)

200

400

600
GF

30 º/s 60 90 120 150

Fig. 6 A From top to bottom: Angular size of CAVs, corresponding
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predicted by the η, κ and GF models as a function of constant angular
speed

tp = (ρλ)/2 −
√
D̄

ρ
, D̄ = ρ2λ2

4
+ 2ρβ̄. (21)

Peak time of the eta model The peak time is determined by
Eq.2. In addition to Eq.5, we need

θ̈ (t) = 2y(
1 + y2

)2
(
dy

dt

)2

− 1

1 + y2
d2y

dt2
, (22)

as well as

dy

dt
= ρ

2
(t − λ) + ρ

2
t = ρ

(
t − λ

2

)
,

d2y

dt2
= ρ, (23)

and

(
dy

dt

)2

= 2ρy + ε, with ε = ρ2λ2

4
. (24)

Using these results in Eq.2 leads to

3ρy2 + 2(ε − αρ)y − αε − ρ = 0. (25)

Note that if ρ = 0 this equation reduces to y = α/2 as
expected for looming stimuli (see Eq.3).

Forρ > 0 the function g(y) = 3ρy2+2(ε−αρ)y−αε−ρ

is an upright parabola. Its value at y = 0 is −(αε + ρ) < 0
since α > 0, ε > 0 and ρ > 0. Hence, it has one positive
and one negative root determined by the equations,

y±=−2(ε−αρ) ± √
ζ

6ρ
, ζ=4(ε−αρ)2+12ρ(αε+ρ).

(26)

Clearly, y+ is the positive root since |2(ε − αρ)| <
√

ζ .
Conversely, if ρ < 0 then g(y) will be an inverted

parabola. As shown below, under our assumptions both

αε + ρ > 0 and ε − αρ > 0 (27)

hold. The first inequality implies that g(y) has two positive
roots. Combined with the second inequality this also implies
that

√
ζ < |2(ε − αρ)|, and thus, y+ is the smallest root.

To obtain time relative to collision at the peak, we can use
again Eq.20 but with β̄ replaced by y+. Hence, the solution
is

t± = λ ± √
D

2
, D = λ2 + 8

y+
ρ

, (28)

where the negative sign is selected for ρ > 0 and the positive
sign for ρ < 0. Alternatively, we can use the value of tp
computed from Eq.21 with the same substitution as above.
Examples.Fig. 5B,C plots the peak times and peak threshold
angles predicted by the η and κ models and computed from
Eq.21 using the same parameters as in Fig. 2. For decelerat-
ing NZAs (γ < −50 ms), both the η and κ models predict
peak times occurring before those of looming stimuliwith the
same time to collision. Conversely, accelerating NZAs result
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in peak times after those of their corresponding looming stim-
uli. The timing difference is smallest for fastest accelerating
stimuli and becomes increasingly large as γ becomes more
negative (i.e., for larger deceleration). Accordingly, the η

model predict increasingly smaller threshold angles than the
κ model as deceleration increases.
Peak time of the GF model The peak times of the GF model
were computed numerically for looming stimuli and NZAs
(Fig. 5D). As for the η and κ models, the peak times of decel-
erating NZAs occur earlier than those of their associated
looming stimuli, while those of accelerating NZAs occur
later. A linear fit of looming stimuli peak times allows to
compute the associated threshold angles using Eqs. 3 and 4
(Fig. 5D, inset). This reveals that the threshold angles of the
GFmodel are nearly constant for NZAs. Thus, the GFmodel
resemblesmore closely the κ than the ηmodel in this respect.
Proof of the inequalities inEq.27Toprove thefirst inequality,
note that when ρ < 0 we have γi < γc < 0 and hence 0 <

γc/γi < 1. Setting x = 1 − γc/γi this implies 0 < x < 1.
Using Eqs. 15 and 17, the first inequality may rewritten as

α

(
1

γi
− 2

γc

)2

− 2

γ 2
c yi

(
1 − γc

γi

)
> 0 ⇔

α

(
2 − γc

γi

)2

>
2

yi

(
1 − γc

γi

)
⇔

α(1 + x)2 >
2

yi
x ⇔

αyi
2

>
x(

1 + x2
) .

As the maximum value of the right-hand side over [0; 1] is
1/4, we obtain αyi > 1/2, which will always be satisfied
under our typical conditions (e.g., α = 9 and yi = 76.4, see
Figs. 1 and 2).

Consider now the second inequality, whichmay be rewrit-
ten as

(
1

γi
− 2

γc

)2

+ α
2

γ 2
c yi

(
1 − γc

γi

)
> 0 ⇔

(
2 − γc

γi

)2

> −2α

yi

(
1 − γc

γi

)
⇔

(1 + x)2 > −2αx

yi
.

This last inequality will always be satisfied since the right-
hand side is smaller than 0.
Testing model predictions on surrogate data Although the η

and κ (or GF) models considered above make different pre-
dictions for the peak times and angular threshold values asso-
ciatedwithNZAs, it remains to be seenwhether the stochastic
variability of neuronal responses allows to distinguish them
experimentally. This question can be addressed theoretically

for the LGMD/DCMD neurons since the experimental vari-
ability of their peak responses has been characterized for
looming stimuli (Gabbiani et al. 1999). If we assume this
variability to be normally distributed (Gabbiani et al. 1999),
it can be extrapolated to NZAs under the assumptions of the
η or κ models.We can then test the ability to detect a fixed (κ)
or variable (η) angular threshold for NZAs using surrogate
data generated from these variability models.
Surrogate data for the kappa model For the κ model, we
assume that the fixed threshold angle takes the value θt =
12.5◦ as is typical for the LGMD/DCMD neuron (Gabbiani
et al. 1999). In addition, we assume a fixed angular error,
which we deduce from Fig. 7 of Gabbiani et al. (1999) to be
equal to σθt = 3.1◦/2 = 1.55◦ (note the halving since the
variability given there is for the full angle, θ f ). Under these
assumptions, the angular threshold variability comes from a
normal distribution with mean θt and variance σ 2

θt
,

θrnd ∼ N (θt , σ
2
θt
).

Further, we assume a typical delay between peak time and
angular threshold, δ = 25 ms (Gabbiani et al. 1999). Using
Eqs. 18 and 3, the corresponding peak random times for
looming stimuli are given by

trnd − δ = γ β̄rnd ,

where β̄rnd = 1/ tan(θrnd). According to Eq.19, the peak
random times for NZAs are given by

ρ

2
(trnd − λ)trnd = β̄rnd .

The value of trnd is obtained from β̄rnd using Eq.20.
Surrogate data for the eta model. According to Eq.2, the
η model is characterized by a relative angular acceleration
threshold, θ̈ (t)/θ̇(t)2 = α. For looming stimuli, we deduce
from Eqs. 5 and 22 that,

θ̈ (t)

θ̇(t)2
= 2y(t) and

d

dt

(
θ̈ (t)

θ̇(t)2

)
= 2

γ
.

Hence, to first order,

σθ̈/θ̇2 = 2

(−γ )
σtp (since γ < 0).

Comparing with Eqs. (8) and (9) of Gabbiani et al. (1999),
we deduce that

σθ̈/θ̇2 = (1 + α2
f )(2σθt ) =

(
1 + (4.7)2

) (
3.1◦ π

180

rad
◦

)

= 1.25,
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where the value of α f is taken from Fig. 4 of Gabbiani et al.
(1999).

To generate random peak times of the η model, we start
with a random variable representing the relative angular
acceleration threshold,

ζrnd = (θ̈/θ̇2)rnd ∼ N (α, σ 2
θ̈/θ̇2

).

For a looming stimulus, ζ = 2y(t − δ) which leads to trnd −
δ = γ

2 ζrnd . For NZAs, Eqs. 5 and 22 lead to

ζ = θ̈

θ̇2
= 2y − (1 + y2)

d2y/dt2

(dy/dt)2
.

Using Eqs. 23 and 24, we obtain

ζ = 2y − (1 + y2)ρ

2ρy + ε
,

which leads to

(1 + y2)ρ = (2y − ζ )(2ρy + ε).

This last equation is identical to Eq.25, and for a given value
of ζrnd , it is solved as in Eq.26 to obtain y+(ζrnd). We can
then use this value in Eq.28 to compute trnd − δ.
Simulation results Using the two surrogate data models
described above, we simulated 10,000 synthetic data sets
consisting of 10 peak times for looming stimuli with γ val-
ues equal to −20, −30, −40, −50, −60, −70 and −80 ms
and 10 peak times for NZAs with the same γc values. The
peak times of looming stimuli were fitted with a linear model
as in Gabbiani et al. (1999) to determine an estimated slope
and delay (see Eq.3). The estimated delay was then used
to compute the threshold angles, θ(tp − δ), using the syn-
thetic tp values for the NZAs. Since the computed threshold
angles are nonlinear functions of θrnd and ζrnd , they may
not follow a normal distribution. Hence, we tested whether
they were identical across γ values using the Kruskal–Wallis
procedure, a nonparametric analysis of variance.

For the η model, 81 percent of synthetic data sets had
threshold angles that were significantly different across γ

values. In contrast, for the κ model only 22 percent of syn-
thetic data sets had significantly different threshold angles.
These results suggest that LGMD/DCMD data for paired
looming stimuli and NZAs might be able to distinguish the
two models despite its expected experimental variability.

Further, based on an Anderson–Darling test 38 percent of
synthetic η data sets had computed angular threshold values
that were not normally distributed. For the κ model, only 7
percent of synthetic data sets were not normally distributed.
These results justify the use of the nonparametric Kruskal–
Wallis test.

6 Constant angular velocity stimuli (CAVs)

A second type of stimulus with varying acceleration leads to
different responses in the η, κ and GF models. This stimu-
lus type simulates objects approaching at a constant angular
velocity. If θi is the initial and with θc the final half-angle at
collision (in our case 1◦ and 90◦, respectively), the trajectory
is described by the equation

θ(s) = θi + βs, β = θc − θi

sc
, (29)

where s is time from stimulus start, sc is the collision time
and β is the angular speed (in units of rad/ms). If time is
computed relative to collision, t = s − sc, then substituting
s = t + sc in the right-hand side of Eq.29 yields

θ(t) = θc + βt .

The corresponding normalized distance is obtained from
Eq.1 and is illustrated for a set of constant angular velocities
in Fig. 6A, immediately under the corresponding constant
angular velocity traces (second panel from the top). The
selected angular velocities span the range observed at the
peak firing rate time of the LGMD neuron for looming stim-
uli between −80 and −20 ms. As can be seen from this
figure, CAVs correspond to an extreme case of deceleration
around collision time. The instantaneous normalized speed
of approach is given by

dy

ds
= d

ds
(tan θ(s))−1 = −β

sin2 θ(s)
.

Hence, the normalized speed is largest at the beginning of the
approach, when θi = 1◦, and smallest at the end of approach.
In general, the smaller the initial angle the larger the initial
speed since sin θ → 0 as θ → 0, while at collision time
dy/ds = −β since sin θ = 1 when θ = 90◦.

The response of the η and κ models are depicted in Fig. 6A
(bottom two panels, respectively). The η function predicts an
initial transient to the decelerating stimuli locked to stimu-
lus motion onset, while the κ model predicts a peak at its
preferred angular size. Correspondingly, the peak time of the
η model follows with a fixed delay (δ) the stimulus onset,
whereas the delay in response of the κ model decreases with
increasing angular velocity (Fig. 6B). The GFmodel predicts
a peak response time relative to stimulus onset that is similar
to that of the κ model.

7 Discussion

In this work, we investigated three models describing the
responses of looming-sensitive neurons in grasshoppers,
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vinegar flies and goldfish, respectively. When presented with
looming stimuli, the three models predict a fixed threshold
angular size at the time of peak neural response, independent
of the stimulus parameter γ (modulo a delay). In contrast, we
show that for stimuli with accelerating trajectories the three
models predict different peak response times and threshold
angles. Our results clarify the relation between the models
and provide new tools to study and distinguish them experi-
mentally.

The η, κ and GF models were formulated using differ-
ent experimental constraints and biophysical considerations
(Hatsopoulos et al. 1995; Ache et al. 2019; von Reyn et al.
2017; Preuss et al. 2006). The η model of grasshoppers pre-
dicts an increase in peak firing rate as γ increases (e.g., from
−80 to−20ms; Fig. 2A). Experiments confirmed this depen-
dence for the peak LGMD/DCMD firing rate, although it is
not as strong as predicted (Gabbiani et al. 1999). Similarly,
combined behavioral and electrophysiological data suggest
that a fixed number of spikes is required to generate jump
escape behaviors, though again not from stimulus start as
predicted (Fotowat et al. 2011). In contrast to the γ depen-
dence of the peak η model firing rate, the κ model predicts a
fixed peak response (Fig. 2B). This is what was observed in
intracellular recordings of the goldfishMauthner cell (Preuss
et al. 2006). In the GF model of Drosophila melanogaster,
the peak response to looming stimuli is also predicted to
be γ -dependent, though not as strongly as in the η model
(Fig. 4).

In grasshoppers, the variability of LGMD/DCMD firing
rate responses to looming stimuli across animals has been
studied over a broad range of γ values (Gabbiani et al. 1999).
This showed a large variability across animals, requiring a
generalization of the ηmodel that adds a static nonlinearity to
accommodate the data (see Eq. 7; Gabbiani et al. 1999). This
generalized model is sufficiently flexible to also describe the
GF or the κ model. We illustrated this by providing a closed
(and invertible) formula mapping the κ model onto the η

model (see Eq.11 and Fig. 3). This observation raised the
question of whether other stimuli might better differentiate
the η, κ and GF models.

We took a hint from work on the prey capture of vine-
gar flies by damselflies, showing that predator acceleration
is ethologically relevant (von Reyn et al. 2014). Thus, our
first set of stimuli adds a nonzero constant acceleration term
to looming stimuli. The normalized acceleration values of
these nonzero acceleration stimuli encompass the range rel-
evant for prey capture by damselflies. And indeed, we found
that NZAs lead to different model responses, with the κ and
GF models predicting a constant angular threshold while the
η model does not (Fig. 5). The reason is that the η model is
not a ‘true’ angular size threshold model, but rather a rela-
tive angular acceleration threshold model (Eq.2). These two

threshold models (angular size and relative angular accel-
eration) happen to make identical predictions for looming
stimuli. Notably, the sensitivity to angular acceleration of the
LGMD/DCMD neurons has been documented when study-
ing their responses to pseudo-naturalistic stimuli (Rind and
Simmons 1992; Simmons and Rind 1992).

A second hint came from early DCMD recordings to con-
stant angular velocity stimuli, which showed a fixed delay
of peak response following the onset of stimulation (Hat-
sopoulos et al. 1995). In contrast, the GF model predicts a
decreasing delaywith an angular speed increase (von Reyn et
al. 2017). Similarly, our results show that theκ model predicts
a decreasing delay with an angular speed increase (Fig. 6B).
CAVs exhibit strong deceleration, and accordingly, the dif-
ferences between themodels are stronger than forNZAs.Yet,
although NZAs produce more subtle changes across models,
surrogate data based on variability extrapolated from neural
DCMD responses to looming stimuli suggest that they might
still be detectable experimentally.

A related question is whether the different model pre-
dictions could be tied to behavioral escape responses for
accelerating stimuli as already shown for looming stimuli
(e.g., Fotowat et al. 2011, 2009; von Reyn et al. 2014;
Bhattacharyya et al. 2017). Because behavioral variability is
usually considerably higher than neuronal response variabil-
ity (Fotowat et al. 2011), this is expected to be more difficult.
For GF-mediated behavioral responses an additional com-
plication stems from the fact that the probability of response
starts low and increases with γ , which is alsowhen the differ-
ences in model predictions are the smallest (von Reyn et al.
2014).

In summary, this works brings a better understanding of
the relationship between neural models of collision detec-
tion. Further, it also establishes the groundwork to compare
experimentally their predictions for accelerating stimuli, a
topic pursued in a companion paper (Dewell et al. 2022).
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