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"There's so much fun to be had. . . . J don't want you to take this stuff too seriously. 
I think we should just have fun imagining it, and not worry about it — there's no 
teacher going to ask you questions at the end."(R. P. Feynman) 

1 Chern-Simons theory 

Chern-Simons theory has come to play an important rôle in three-dimensional 
topology because of its connections with Ray-Singer analytic torsion [47], the 
Gauss linking number [25], [14], [57], the Jones polynomial in knot theory [35] 
and its generalizations [63], [23], and three-manifold invariants [63], [12]. Recently, 
Chern-Simons forms and actions over noncommutative spaces [7] have been de­
fined [45], [6] and turn out to provide a unifying perspective for topological gauge 
theories in odd and even dimensions [6]. 

The comparatively trivial abelian pure Chern-Simons theories (which repro­
duce the Gauss linking number and analytic torsion) have turned out to be fun­
damental building blocks for a theory of the fractional quantum Hall effect [61], 
[31], [59], [20], [29], [49]. This effect is one of the more exciting effects in condensed 
matter physics, discovered and explored between 1980 and the present [58], [54], 
[9], [44]. It has also been observed that S,^7(2)-Chern-Simons theories come up in 
problems of condensed matter physics connected with the theory of spin liquids; 
see e.g. [26]. 

Thus, it is well justified to start this report with a short review of the defini­
tion and some mathematical properties of Chern-Simons theory. 

Let M be an oriented, framed three-manifold (the framing of M corresponds 
to a choice of a trivialization of the tangent bundle of M). Below, we shall consider 
the example where M — M3. Let G be a compact Lie group, or let G = RN. Let 
E denote the total space of a principal (7-bundle with base space M, and let V 
be a connection on E. Locally, we may describe V in terms of its components, 
A (the "gauge potential"), in some local trivialization of E. These components 
are 1-forms on M with values in Lie G (the Lie algebra of G). The Chern-Simons 
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3-form on M is defined, locally, by the formula 

CS^(A) = ti (A A dA + \ AAAAA), (1.1) 

where tr(-) is a trace on Lie G that is invariant under the adjoint action of G on 
Lie G. The Chern-Simons action functional S is defined, formally, by 

S(A) = ±- JCS^\A). (1.2) 
M 

Unfortunately, this definition does not make sense in general. To understand the 
problems with (1.2), we consider the example where M — S3 and G = SU(N). 
We choose an orthonormal basis { T « } ^ , DN = N2 — 1, in AN-I = Lie SU(N) 
and choose tr(-) such that 

tr (TaTp) = -^Saß, (1.3) 

fcGi Because ^ ( G ) = Z, the action S (A) in eq. (1.2), with tr(-) as in (1.3), 
is defined only modulo 27r/cZ. It follows that exp i S (A) is a well-defined, single-
valued functional of the connection V if and only if /e E Z. Similar remarks apply 
to general compact Lie groups. 

Assuming now that tr(-) has been chosen such that exp i S (A) is a well-
defined functional of V, quantized Chern-Simons theory is defined as a mathemat­
ically precise interpretation of the formal Feynman "functional measure" 

dP(A) := Z'1 exj)iS(A)VA, (1.4) 

where VA is a formal Lebesgue measure on the affine space of connections on 
E, and the normalization factor Z (the partition function) is chosen such that 
J dP(A) = 1. One would hope to extract from (1.4) a precise definition of dP(A) 
as a complex measure on the space A of orbits of gauge potentials under the action 
of the group of gauge transformations. 

The functional exp i S(A) does not require choosing a metric on M, and one 
might expect, therefore, that dP(A) is independent of a choice of a metric on 
M. Unfortunately, this is a wrong expectation. The definition of "UA" involves 
the choice of a metric on M, and, in order to eliminate dependence of dP(A) on 
that metric, one must add to S (A) a "counterterm", which is given by the Chern-
Simons action of the Levi-Civita spin connection [63], [5]. One may then hope to 
arrive at a definition of dP(A) that depends only on the framing of M and hence 
yields what is called a topological gauge theory [63], [62]. 

The kinds of functionals on A one would like to integrate with the "measure" 
dP(A) are Wilson loops: let £ be a loop in M (i.e., a smooth embedding of S1 in 
M), and let R be an irreducible, unitary representation of G. We define 

WR[C] := TrRR [P exp Ç J A], (1.5) 
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where P indicates path ordering, and Ç is some positive constant ("field strength 
renormalization" constant) to be determined. For a smooth Lie G-valued 1-form 
A, the R.S. of (1.5) can be defined via Chen's iterated integrals, i.e., through its 
Dyson series, 

As it stands, the expression on the R.S. of eq. (1.4) is nonsense. A conventional 
strategy used to make sense of (1.4) is to fix a gauge and apply the Faddeev-Popov 
procedure [10] to interpret VA. "Fixing a gauge" consists in choosing connection-
dependent, local trivializations of E in such a way that the gauge potentials A 
satisfy certain constraints. We wish to exemplify gauge fixing in a special case, 
following [23]: we choose G = SU(N) and M — R3. Points x E M are represented 
by (Cartesian) coordinates (x+,x~,t), with x+,x~,t in M. We expand the gauge 
potential A in the basis {dx+, dx~, di] of 1-forms: 

A(x) = a+(x)dx^ + a-(x)dx~~ + a^(x)dt, (1.6) 

where ai(x) E AN-\, i = +, —,0. We choose a basis {Ta}a=i in A^-i and a trace 
tr(-) on ATV-I as specified in (1.3). Then 

DN 

a>i(x) - ^Taf(x)Ta, 

where af (x) is a function on M, Vz, a. One easily shows that the condition 

a-(x) = 0 (1.7) 

fixes a gauge (called "light-cone" or "axial" gauge). In this gauge, the Chern-
Simons action S of eq. (1.2) takes the form 

S {A) = — / tr (a+d-aQ) dx+ A dx~ A dt. (1.8) 

This action is quadratic in A. One may therefore attempt to interpret the measure 
dP(A) in (1.4) as a "complex Gaussian measure". Well, it actually is a "complex 
Gaussian", but it isn't a measure. However, all we really need to be able to do 
is to calculate moments of dP(A). Let ((•)) denote formal integration J dP(A)(-) 
with respect to dP(A). The first moments (af(x)) vanish and the second moments 
(af (x) aß (y)) can be expressed in terms of the partial derivative of a Green function 
of the d'Alembertian d+d- with respect to x+. Together, they determine all higher 
moments ("Wick's theorem"). It is advantageous to complexify the planes {t = 
const.}, use complex coordinates, z = x+ E C, z — x~ E C , and analytically 
continue the moments of dP(A) in x+. The physicists call this "Wick rotation". 
Wick rotation is convenient, but not indispensable, in the following calculations. 
The Wick-rotated second moments are: 

(aZ(x)a?(y)) = 0, for all j,a,ß, 

(a%(x) aß+(y)) = 0, for all a,ß, 

(a%(x)aß
Q(y)) = 0, for all a, A 
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and 

(a%(z,t)aß(w,s)) = 2X6aß6(t-s)——, (1.9) 

with A = — 1/k. Expectations ((•)) of more complicated functionals of A can be 
calculated from (1.9) by using Wick's theorem. In particular, we may calculate 
expectations of "Wilson lines" and Wilson loops from (1.9) (e.g. by expanding 
them in a Dyson series). 

Let i i , . . . , Im be a partition of { 1 , . . . , n}, m = 1,2,..., n = 1,2,... . To 
every index set Ig we assign a representation Ri of SU(N). Each index j E Ig 
labels a smooth curve 

7j(*) = {*j(0 e C : t0 <t' <t] 

in the complex plane that determines a smooth curve &j (t) in M3 given by 

aj(t) = {(Re Zj(t'), Im Zj(t'),t') : zó{i!) E ^(t), t0<tf < t}. (1.10) 

We define a "Wilson line operator" Wj (t) by setting 

Wj(t) := ifc[PexpC J A], (1.11) 

where ( > 0 is a field strength renormalization constant. This operator is a holo-
nomy matrix of the connection V with components A and acts on the representa­
tion space VRe of SU(N). It is easy to see that 

dwj(t) = Ç daj(t) Wjfr), (1.12) 

where 
t 

aj(t) := d i ^ [ / " { a + ( z i ( 0 , O i j ( * / ) + ao(«i(0»* /)}{ft/]» 
to 

with z(t) = dz(t)/dt, and dRg the representation of A^-i determined by Rg\ 
j E Ig, 1 = 1 , . . . ,m. 

The basic object in a mathematically precise definition of SU(N) pure Chern-
Simons theory on M3 is 

0n(Mo) := (wi(*) ®---® w„(t)), (1-13) 

which is an endomorphism of the vector space 

Vn := VRii)®---®VRin), (1.14) 

with RU} = Ri, for j E Ig, n= 1,2,3,. . . . One may attempt to calculate (j)n(t, to) 
by deriving a differential equation for it. We define 

DN 

Slij := ^ ! I (8 ) - - -®dÄ W (T a ) (8 ) - - - (g )d^ (T a ) (8 ) - - -®l I , (1.15) 
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for all i,j, with 1 < i < j < n. Using (1.12), one shows — see [23] — that 

in fata) = K Y, " ' S I * JS"tf*"(* '*•») ' ( L 1 6 ) 
l<i<j<n Zl^ ' Z^ ' 

where n = Ç2À. Eq. (1.16) is the celebrated Knizhnik-Zamolodchikov equation[3&\. 
An alternative method to calculate </>n(t,to) would be to expand all Wilson line 
operators Wj (t) in their Dyson series and to calculate the resulting terms by using 
Wick's theorem and (1.9) [16]. 

Let Mn denote the subset of C n consisting of ?i-tuples, z = (z\,... ,zn), of 

complex numbers, with Zi ^ Zj, for i ^ j , and let Mn be the universal cover of 
Mn. Let K be the space of V?i-valued functions on Mn. On K we may define a 
connection 1-form u) by setting 

u) = K 2_] d ^°&(zi — zj) ^ij- (1.17) 
l < i < J < 7 1 

This connection is called the Knizhnik-Zamolodchikov connection. It is easy to 
verify that u) is flat, i.e., 

du + uj A u) — 0. 

This is a consequence of the infinitesimal pure braid relations 

[toij&ki] = o, [n^fyfc + îîfed = o, (Lis) 

where i, j , k, and £ are all distinct. Eq. (1.16) may now be written as 

dc/)n = UJ (j)n, (1.19) 

which is the equation for a parallel transporter. 
Let (z\,... ,zn) be a point in Mn, and let 7r be an arbitrary permutation of 

{ 1 , . . . ,n} leaving the subsets I\,... ,Im invariant. Let CTJ = Oj(ti) be a curve in 
M3, as in (1.10), starting at the point (Re Zj, Im Zj,t^) and ending at (Re zw^, 
Im ^Tr(j), t i ) , for j = 1 , . . . , 7i. The family of all 7i-tuples {cri,... ,an} o£ such curves 
that do not intersect each other is a union of disjoint homotopy classes of curves 
labelled by elements b of a subgroup Bn(I\,... , Im) of the braid group, Bn, on n 
strands defined by the property that the cosets of elements of Bn(I\,... ,Im) mod­
ulo the normal subgroup of pure braids are permutations 7r of { 1 , . . . ,77,} leaving 
i i , . . . ,Im invariant. Let b E Bn(I\,... ,Im), and let {o i , . . . , crn} be n curves in 
the homotopy class b. Let (ßn(b

m, ti, to) be a solution of the Knizhnik-Zamolodchikov 
eq. (1.16) for the curves {ai,... ,o~n}, with initial condition (j)n(°\^->^) = I L • 
Then 

b h-> 0n(Ml,*o) (1-20) 

defines a representation cj)n of Bn(Ii,... ,Im) on Vn. This is a consequence of the 
identity 

0n(&2 o&i;*2,*o) = 0n(&2;*2,t l) 0n(&i;£ i , t O ) 
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(representation property) and the flatness of the Knizhnik-Zamolodchikov connec­
tion U). 

Let 
g •-> R(n)(g) := R{1)(g)®---®Rin)(g)i geSU(N), 

be the representation of SU(N) on Vn. Because the Knizhnik-Zamolodchikov con­
nection L) is 5£/(AT)-invariant, the representation cj)n of Bn(Ii,... ,Im) on Vn com­
mutes with the representation R^ of SU(N) on Vn. Let Xn be the subspace of Vn 

consisting of 5,t/(A/')-invariant tensors, i.e., for £ E Tn, R(n)(g)£ — £> Vg £ SU(N). 
The space 2^ inherits the scalar product of Vn. It is an invariant subspace for (j)n. 
It is interesting to ask whether the representation cj)n of Bn(Ii,... ,Im) on Vn, or 
its subrepresentation </>n I , are unitary in the scalar product of V^. The answer 
is that they are not unitary. However, 0 n may contain a unitary subrepresentation: 
suppose that 

K = ± — | — , * = 1,2,3, . . . , (1.21) 
k + c2 

where c2 is the eigenvalue of the quadratic Casimir operator in the adjoint rep­
resentation of the group G, normalized such that c2 = N, for G = SU(N). Let 
Uq(Lie G) denote the usual quantum deformation of the universal enveloping al­
gebra of Lie G with deformation parameter q = exp ìITK [34]. We assume that 
the representations Ri, £ = 1 , . . . , m, have positive g-dimensions; see e.g. [21]. One 
may then define a certain quotient Tn of Vn of Uq (Lie G)-invariant tensors, which 
is expected to be invariant under the representation cj)n of Bn(Ii,... ,Im); see e.g. 
Chapter 6 of [21]. The miracle is that 0 n \ w appears to define a unitary repre­
sentation of Bn(Ii,... ,Im) on Tn . For G = SU(2), proofs have been sketched in 
[52], [39]. More details can be inferred from the explicit formulas in [23], [11] and 
the general results in Chapters 5 and 6 of [21]. For G = SU(N), N > 3, a proof 
may, perhaps, be constructed on the basis of the results in [23], [21], [60], [37], 
but has apparently not appeared in the literature. The result described above is 
expected to hold for arbitrary compact, simple Lie groups G, but proofs are not 
available yet. The mathematical setting within which a proof might be constructed 
is that of braided tensor categories (more precisely "quantum categories" [21]) and 
of generalized hypergeometric functions [46] ; see also the contributions of Felder 
and Wasser man to these proceedings, and references given there. A mathemati­
cally precise definition of quantized pure Chern-Simons theory on M = M3, with 
K as in (1.21), would consist of converting the conjectures just described into the­
orems. Quantum-mechanical state vectors of this theory would be vectors in the 
spaces Tn

q , n — 0,1,2, . . . (ZQ ' := C), and it would determine unitary represen­
tations (ßn of the groups Bn(Ii,...,Im) on Tn , for all Ii,..., Jm , and all n. The 
"physics-inspired" literature on these matters is somewhat confusing, with many 
incomplete proofs for fairly obvious conjectures. 

The analysis sketched above for G = SU(N) becomes very simple when 
G = MiV, N = 1,2,... (abelian pure Chern-Simons theory). See Section 3. Chern-
Simons theories with G = RN are the basic building blocks in the theory of the 
fractional quantum Hall effect. (It will turn out that G is actually given by MN/T, 
where T is an integral Euclidian lattice.) 
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Chern-Simons theory becomes a more interesting, dynamical quantum field 
theory if the manifold M is a full cylinder (and k = 1,2,3,.. . ). In this situation, it 
is equivalent to Lie G Kac-Moody algebra at level k and its representation category. 
See [63], and [43], [24], [16] for more details. In the context of the quantum Hall 
effect, the Kac-Moody currents acquire physical significance as "edge currents". 

But let us return to the representations <f>n of the braid groups Bn(Ii,... ,Im) 
on the spaces Tn, for generic values of the parameter K, and sketch their connection 
with polynomial invariants of knots and links. We choose n = 2p to be an even 
integer and assume that 

ä Ü + P ) = RU)\ j = i , . . . , P | (1.22) 

where Rw is the representation of SU(N) conjugate to R. Let ix be a permutation 
of { 1 , . . . , 2p] with 7r(j + p) = j -\-p, RMM = RU) (j and ir(j) are in the same 
subset Ii of { 1 , . . . ,2p}) for j = 1 , . . . ,p. Let {e^ } be an orthonormal basis of 
the representation space VR. We define vectors £(7r) E X2p by setting 

«*) = E « © « • • • ® « 4 C ® e ^ ( 1 > ) ® • • • « e S W ) - d-2 3) 
a i , . . , , » , , 

Let ò be an element of the braid group u?2p with the property that the coset of b 
modulo pure braids on 2p strands is given by the permutation ir. We consider the 
scalar products 

(EM, 02P(Mi,toH(M.)>- (1.24) 

These numbers are invariants of framed links. Quotients of these scalar products 
by analogous scalar products, with SU(N) replaced by R, yield the evaluation 
of an invariant of oriented links on the oriented link determined by the element 
b E B2P and colored by the representations R^\ . . . , R^p\ The special case where 
RÌ1) = ... z= R(P) = R is the N- dimensional, fundamental representation of SU(N) 
has been analyzed in detail in [23], with generalizations appealing in Section 6.3 
of [24]. 

The scalar products (1.24) can be calculated perturbatively, by expanding 
02p(fy hi io) in a Taylor series in K. The Taylor coefficients can be found by either 
solving the Knizhnik-Zamolodchikov equation for 02p iteratively (see the appendix 
in [23]) or, equivalently, by expanding the Wilson line operators u)j(t) defined in 
(1.11) in their Dyson series, plugging the Dyson series into the R.S. of (1.13) and 
using Wick's theorem and (1.9). These Taylor coefficients are given in terms of 
multiple integrals along the curves &i(t),..., o-2P(t). They are special cases of what 
has become known under the name of Vassiliev invariants [56]: If, in eq. (1.19), 
a specific Knizhnik-Zamolodchikov connection u is replaced by the "universal flat 
connection" defined by (1.17), with {H^} the "universal solution" of (1.18), one 
obtains the Vassiliev invariants of links. 

It is natural to conjecture that the invariants built from (1.24) depend on the 
choice of the gauge group G in a nontrivial and interesting way. For a review of 
recent results concerning this topic see e.g. [2]. 

Now it is time to shift gears and talk about physics. 



82 R. G. MU<£ 

2 Quantum Hall effect and integral lattices 

Experimentally, the quantum Hall effect is observed in two-dimensional systems of 
electrons confined to a planar region Q and subject to a strong, uniform magnetic 
field Bc transversal to £1, as indicated in Figure 1. 

L<^\ 

Figure 1 

By tuning the ^/-component Iy of the total electric current to some value and then 
measuring the voltage drop Vx in the ^-direction of the plane of the system, i.e., 
the difference in the chemical potentials of the electrons at the two edges R and 
L, one can calculate the Hall resistance 

7? — x 

ly 
(2.1) 

and finds that, for a fixed density n of electrons and at temperatures close to 0 K 
(absolute 0), the value of RH is independent of the current Iy. It depends only on 
the external magnetic field Bc. If the electrons are treated classically one finds, by 
equating the electrostatic to the Lorentz force, that 

Bc 

RH = 
ecu 

(2.2) 

where Bc is the ^-component of Bc perpendicular to the plane of the system, e is 
the elementary electric charge, and c is the velocity of light. 

By also measuring the voltage drop Vy in the y-direction, one can determine 
the longitudinal resistance, RL, from the equation 
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Neither classical nor quantum theory makes simple predictions about the behavior 
of RL, but RL > 0 means that there are dissipative processes in the system. 

Two-dimensional systems of electrons are realized, in the laboratory, as in­
version layers that form at the interface between an insulator and a semiconductor 
when an electric field (gate voltage) perpendicular to the interface, the plane of 
the system, is applied. An example of a material is a sandwich (a "heterojunc­
tion") made from GaAs and Ga^Ali-^As. The quantum-mechanical motion of the 
electrons in the z-direction perpendicular to the interface (identified with the x-y 
plane) is then constrained by a deep potential well with a minimum on the in­
terface. Quantum theory predicts that electrons of sufficiently low energy, i.e., at 
low enough temperatures, remain bound to the interface and form a very nearly 
two-dimensional system. 

In a theoretical analysis of the Hall effect it is advantageous to consider 
the connection between the electric current density j(x) = (^(x), j2(x)) and the 
electric field E(x) = (E'i(x),E,

2(x)) at an arbitrary point x = (x1^2) = (x,y) of 
Ü which is given by the Ohm-Hall law 

E(x) = ^j(x), p = {*>** -fH) , (2.3) 
\PH Pyy J 

where pxx = Rh(^yßx)-> Pyy = B-L^xßy) a r e t n e t w o longitudinal resistivities, 
PH = RH is the Hall resistivity, and £x, &y are the widths of the system in the x-
and y-directions, respectively. This is a phenomenological law valid on macroscopic 
distance scales and at low frequencies. 

It is convenient to introduce a dimensionless quantity, the so-called filling 
factor v, by setting 

v = n/(eBc/hc), (2.4) 

where — is the quantum of magnetic flux. Then the classical Hall law (2.2) says 
—1 —i 2 

that RH rises linearly in v, RH — j^v, the constant of proportionality being given 
2 

by a constant of nature, ^-. Because, experimentally, Bc can be varied and n can 
be varied (by varying the gate voltage), this prediction of classical theory can be 
put to experimental tests. Experiments at very low temperatures and for rather 
pure inversion layers yield the following very surprising data shown in Figure 2 
[58], [54], [9]. 
These data tell us the following: 
(1) a H •'= A RH1 ( t n e dimensionless Hall conductivity) has plateaux at certain 

rational heights. The plateaux at integer height occur with an astronomical 
precision of 1:108 (defining a new standard for conductivity and yielding 
perhaps the most precise experimental value for the fine structure constant 
a — 2ive2/hc ~ 1/137). The plateau quantization is insensitive to sample 
preparation and geometry. 

(2) When (v, an) belongs to a plateau the longitudinal resistance RL very nearly 
vanishes. This means that, for such values of u and o-#, there are no dissipa­
tive processes in the system. 
The remarkable nature of these facts has been expressed by Laughlin [41] as 

follows: "The exactness of these results and their apparent insensitivity to the type 
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Figure 2 

or location of impurities suggest that the effect is due, ultimately, to a fundamental 
principle." 

It is the main purpose of this lecture to uncover some aspects ofthat principle. 
We shall be modest and focus our attention on the explanation of why OH must be 
a rational number when RL vanishes, which rational numbers may occur, and what 
properties the system has when RL = 0 and an takes an allowed rational value. 

As a first step, we formulate the classical electrodynamics of a two-dimen­
sional system of electrons in an external electromagnetic field (E,Btot.) when 
RL = 0, and for an arbitrary value of an- Here E is an external electric field, 
and .Btot. = Bc + B, where Bc is a constant, external magnetic field transversal 
to the plane of the system, and B is a small, nonconstant perturbation of Bc. As 
long as we do not describe the dynamics of the spins of the electrons — which are 
quantum-mechanical degrees of freedom — the laws of electromagnetism in such a 
system only involve E = (Ei,E2), the component of E parallel to the plane of the 
system, and £?tot. = Bc + B, the component of -Btot. perpendicular to the plane 
of the system. Because RL is assumed to vanish, eq. (2.3) can be rewritten as 

(i) Hall's law. 
jk(x) = aH eMEi(x), x = (x,t), with k,£ = 1,2, and e = ( ^ *), in units 
where e = h = 1. 

More fundamental are the following two laws: 
(ii) Charge conservation. 

§i 3Q(X) + V • ](x) =0 (continuity equation for the electric charge density j° 
and the electric current density j). 

(iii) Faraday's induction law. 
| 5 ( z ) + V A E ( i ) = 0 . 
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Combining (i), (ii), and (iii), we find that 
& j°(x) =aH§-t B(x). 

Defining j° to be the difference between the total electric charge density and the 
uniform background density, n, we obtain the following result [20]. 
(iv) Charge-flux relation. 

f(x) = aHB(x). 
The laws (i)-(iv) are generally covariant and metric independent (topological) [20]. 
Integrating (iv) over all of space ft, we conclude that 

qG\ = crH $ , (2.5) 

where qe\ = JQ d2x j°(x,t) is the total (excess) electric charge of the system, and 
$ = Jn d2x B(x, t) is the total (excess) magnetic flux passing through the system. 

These simple, beautiful laws, (i)-(iv), are the starting point of our analysis. 
They remain valid in a quantum-mechanical treatment of the electrons, see Section 
3, that leads to rather remarkable conclusions. Let me anticipate the main results 
of our analysis and discuss their consequences. To do this, I must recall what 
integral Euclidian lattices are. 

Let V be a vector space over the rational number field equipped with a 
positive-definite inner product (•,•). In V we choose a basis { e ^ } ^ , N = dim V, 
with integral Gram matrix K, where 

Ki;} = Kji = (e^ej) E Z, (2.6) 

for all i,j — 1 , . . . , N. The basis { e ^ } ^ generates an integral Euclidian lattice T 
defined by 

N 
r = {q = $ > ' e * : ç' CZ, V z } . (2.7) 

i=l 

The lattice T* dual to T, i.e., the lattice of integer-valued linear forms on T, is 
given by 

N 

T* = {n = Y,ni£Ì : n i G Z , V t } , (2.8) 

where {e1}^ is the basis of V dual to {e-j}^1, i.e., 

N 

é = £ (K~lr e,- , (2.9) 

and 

(K-1)* = <eV) = ì &, (2.10) 

where 
A = det K = | T*/r | (2.11) 

is the discriminant of T, and K is the matrix of cofactors (Kramer's rule). 
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The matr ix K is positive-definite, with rank (K) = N, if and only if (•,•) 
is positive-definite. The lattice T is called odd iff it contains an element q, with 
(q, q) .E 2 Z + 1. Thus, T is odd iff Ka is odd, for at least one i E { 1 , . . . , N}. 

We are now in a position to state our main contention. Consider a two-
dimensional system of electrons in a uniform, external magnetic field Bc at a 
temperature T « 0 K, with the property tha t RL vanishes. Following Laughlin, 
we call such a system an incompressible quantum Hall fluid, abbreviated as IQHF. 
We claim tha t the physics of an IQHF on very large distance scales and at very 
low frequencies (i.e., in the so-called scaling limit) is coded into the da ta ( r e , Qe) 
and (r^jQ/j,), where 

(i) T e and Th are two integral, odd Euclidian lattices, and 
(ii) for x = e, h, Qx is a primitive, odd vector in Tx. 

A vector Q E T* is called primitive, or visible, iff g.c.d. ( (Q ,e j ) ) = 1, and Q 

is called odd iff 

(Q,q> = (q,q> mod 2, Vq E V . (2.12) 

The dimensionless Hall conductivity O~H is then given by 

o-H = o-e - ah, (2.13) 

where 

o-x = ( Q x , Q s ) , for a: = e,h. (2.14) 

This proves immediately t h a t &H is a rational number. We shall denote it by 

aH = — , with g.c.d. (nH,dH) = 1. 
dH 

At this point, there is the danger tha t our theory predicts far too many 
possible rational values of O~H- However, what our theory really says is tha t if 
RL = 0 then a H must belong to a certain subset § of the rational numbers, and 
tha t if RL = 0 at some value of G H belonging to S then the properties of the system 
are encoded in some pair, ( r e , Qe) and ( r ^ , Q ^ ) , of integral Euclidian lattices and 
primitive vectors in their duals. Typically it happens tha t there are many pairs, 
( r e , Q e ) and ( r ^ Q ^ ) , corresponding to a given value of an in S. Whether a 
pair ( r e , Q e) , ( r ^ , Qh) describes an incompressible quantum Hall fluid t ha t can be 
realized in a laboratory is a complicated analytical problem of quantum mechanics 
to which our theory can only give a tentative answer! Thus, it is very likely t ha t 
many points in § do not correspond to the Hall conductivity a H of a real IQHF. 

The subscripts "e" and "ft" refer to the following physics: the basic charge 
carriers in a quantum Hall fluid (QHF) can be mobile electrons of electric charge 
—e. If RL = 0 the fluid is then described by a pair ( r e , Q e ) . They could also 
be mobile holes ("missing electrons") of charge + e , in which case the IQHF is 
described by ( r ^ , Q ^ ) . Finally, an IQHF could be composed of two fluids, one 
consisting of mobile electrons, the other one consisting of mobile holes. It is a 
natural , physical idea tha t , for small values of the filling factor, these two fluids 
do not rnix.' We shall assume this henceforth (but see [22], [27] for a more general 
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analysis also involving (indecomposable) Lorentzian lattices). The IQHF is then 
described by a pair ( r e ,Q e ) , (r^, Q/J. As the electric charge of an electron is —e 
and the one of a hole is +e, there is a relative minus sign between oe and a h in 
eq. (2.13)1. As there is a complete symmetry between electrons and holes, it is 
sufficient to develop the theory of QH fluids composed of electrons, and we set 
OH := cre and drop the subscript "e" henceforth. 

A pair (r,Q), where T is an integral, odd Euclidian lattice and Q is a 
primitive, odd vector in T* satisfying (2.12), is called a chiral quantum Hall lat-
tzce(cQHL). Our task is to classify cQHL's and to compare the predictions of the 
theory with experimental data. 

The success of the theory is quite impressive: In Figure 3 we display measured 
values of a H when RL ~ 0 (i.e., for IQHF's) in the range 0 < a H < 1 that 
have been reported in the literature [9], [53] (for so-called single-layer, narrow-well 
IQHF's). We divide the data into separate "windows", Ep, p = 1,2,3,.. . , and 
each window Ep is the union of a left window E< and a right window E>. Well-
established plateau values of G H (i.e., values of G H corresponding to some IQHF) 
are indicated as a •. Values of OH where RL has a clearly visible local minimum 
~ 0, and a H has an inflection point as a function of the filling factor v are indicated 
as a o. Very weak, or controversial data are indicated by .. Finally, the symbol p.t. 
indicates that, to such a value of cr#, there correspond several distinct IQHF's, 
i.e., there are phase transitions between two or more different IQHF's with the 
same an-

The remarkable fact is that these data — in particular the absence of data 
points — are very accurately reproduced by our theory of cQHL, see [28], [22], 
[27], if a heuristic principle of stability of a cQHL is introduced: the stability of a 
cQHL is intended to be a measure for the stability of the corresponding quantum-
mechanical state of an IQHF under small perturbations, such as changes of the 
filling factor v, see (2.4), or of the density of "impurities" in the system, etc. In 
order to formulate our stability principle for cQHL's mathematically, we must 
introduce some numerical invariants of cQHL's. The most primitive invariant of a 
cQHL (r, Q) is the dimension N of the lattice T. Next, let 

r = © Vj (2.15) 

be the finest decomposition of the lattice T into an orthogonal direct sum of 
sublattices Fj,j = 1, . . . , k, and let 

k 

Q = J2 Q(j)> Q ( j ) Ê r } > (2-16) 

be the decomposition of Q associated to (2.15). We say that a cQHL (r, Q) is 
primitive iff Q(J') is a (nonvanishing) primitive vector of r j , for all j = 1 , . . . , k. This 

1 Historically, the existence of holes in semiconductors was first discovered in measurements 
of the sign of RH ! 
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Figure 3. Observed Hall fractions a H in the range 0 < a H < 1 and their experi­
mental status in single-layer quantum Hall systems. 

means that the pairs (Vj, Q ^ ) are indecomposable cQHL's. Every indecomposable 
cQHL (I\), Qo) has a basis {qi , . . . qjvQ} with the property that (Qo, qt) = —1, for 
all £ = 1 , . . . , NQ. The set of all such bases is denoted by 13(1*0, Qo). We then define 
an invariant £max. (called "relative-angular-momentum invariant" [28]) by setting 

^max.(r0,Q0) := ^min ( m a x (qi><li))-

If (r, Q) is a decomposable, primitive cQHL, i.e., 

(2.17) 

(r,Q) = © (r^.Qü)), 

as in (2.15), (2.16), we define 

*max.(I\Q) = max fmax.^.QÜ)). 

(2.18) 

(2.19) 

Our stability principle for cQHL's says that an incompressible quantum Hall fluid 
corresponding to a primitive, chiral quantum Hall lattice (r , Q) is the more stable, 
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the smaller the value of the invariant 4nax.(I\Q) and the smaller its dimension 
N. Available experimental data suggest that 

*mBx.(I\Q) < 7, (or 9), (2.20) 

for an arbitrary cQHL (r, Q) describing a physically realizable IQHF. This is con­
firmed, qualitatively, by heuristic theoretical and numerical arguments [27]. Fur­
thermore, there are fairly convincing, but heuristic theoretical arguments suggest­
ing that, for a real IQHF with a nonzero density of impurities of finite strength, 
the dimension N of the corresponding cQHL is bounded above by a finite integer, 
TV*, depending on the filling factor v, the density of electrons, and the density and 
strength of the "impurities", with iV* —* oo, as the density of "impurities" tends 
toO. 

It is an elementary result in the theory of chiral quantum Hall lattices that 
the total number of cQHL's, (I\Q), with £max.( r»Q) < ^* a n d N = d i m r ^ -N*> 
for arbitrary finite values of £*,N*, is finite (though rapidly growing in £*,N*). 

A simple consequence of the Cauchy-Schwarz inequality tells us that the Hall 
conductivity oR of an IQHF corresponding to a cQHL (r, Q) obeys the inequality 

OH = crH(r,Q) = <Q,Q) > ^ « . ( r . Q ) " 1 . (2.21) 

This bound has interesting consequences (confirming a prejudice of Mark Kac 
[36]): if a H G Ep , i.e., 

then 
*mBx.(I\Q) > 2 p + l . (2.22) 

Our stability principle for cQHL's then says that the most stable IQHF's with 
O'H £ Ep are those described by cQHL's (r, Q) satisfying 

4mx.(r, Q) = 2p + 1 (N as small as possible). (2.23) 

Combining the universal upper bound (2.20), i.e., 4nax.(I\ Q) < 7, with the bound 
(2.21), we conclude that there should not exist any physically realizable IQHF's 
with a H < \t and that, for G H in the window E3, 4nax.(r, Q) must take the small­
est possible value compatible with (2.21), i.e., Anax.(r,Q) == 7. These conclusions 
are compatible with the data displayed in Figure 3. 

The family of all primitive cQHL's (r, Q), with cr#(r, Q) E Ep and 
^max.(r>Q) = 2p + 1 (the smallest possible value), is henceforth denoted by Hp. 
In [22] we have proven an easy, yet remarkable theorem that says that there exist 
bijections, called "shift maps", 

Sp : Wi-»W„+i, p = 1,2,3, . . . , (2.24) 
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between the cQHL's in Hi and those in Hp-\-i, with the properties that 

^ ( S p O ^ Q ) ) - 1 = aH{T,Qrl+2p, 

and 
^max.(5p(r,Q)) = ^m a x . (r}Q) + 2p. (2.25) 

Furthermore, we have proven a somewhat deeper, but still rather easy uniqueness 
theorem[22\: let 

Wp - { ( r , Q ) e W p : ^ ( r , Q ) G E < } . (2.26) 

Then all the cQHL's (r, Q) in Hp are known explicitly: the possible values in E< 
of the Hall conductivity an corresponding to IQHF's described by cQHL's in Hp 
are given by the formula 

°» = mri' (2"27) 

and to each N = 1,2,3,... , with G H given by (2.27), there corresponds a unique 
cQHL, (rjv,p, Q), of dimension N, and there are no further cQHL's in Hp\ 

Note that it follows from the bound (2.20) on -£max. that Hp contains all 
possible cQHL's with aH G E< (as given by (2.27)), for p = 3. 

The lattices (TN)P,Q) with orH(TNtPiQ) = (Q,Q) = N(2pN + 1) _ 1 can be 
described as follows: the lattice TNìP has a basis {q, e i , . . . , e^v-i} with the property 
that 

(Q,<?) = - 1 , (Q,eJ-> = 0, j = l,...,N-l, (2.28) 

and with a Gram matrix K given by 

K 

/ 2 p + l - 1 
- 1 2 

- 1 

V 
0 

-1 
2 -1 

- 1 
-1 2 / 

(2.29) 

where 2p+l = (q, q), and Ki+\j+\ = (e^, e^) are the matrix elements of the A^-i-
Cartan matrix. Thus, the Witt sublattice [8] of TtftP is the Ajv-i-root lattice, and 
it is natural to call the series (rjvjP,Q) G Hp, N = 1 ,2 ,3, . . . , of cQHL's the 
fundamental A-series in the window Ep . The cQHL's (rjviP, Q) described here are 
typical examples of a general class of so-called maximally symmetric cQHL's [28], 
[27], which can be classified. The shift map <Sp_i acts on the A-series in Hf by 
replacing K\\ = 3 by Kn = 2p + 1 and leaving the other matrix elements in the 
Gram matrices unchanged. 

If you compare these results with the data in the windows E^ of Figure 3 
and recall that an IQHF is the less stable, the larger the values of p and N of the 
corresponding cQHL, the agreement between theory and experiment is remarkable. 
Is there a problem with the data point at OH = ^j G Ef ? There are no cQHL's 
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with a H = Yï and £max, = 3, but there actually are at least two distinct, low-
dimensional cQHL's, with a H = ji and ^max . = 5(!), one obtained by applying 
the shift map Si to the lattice Z © 3Z, hence of dimension 2, and another one 
of dimension 7 (among, perhaps, further lattices of high dimension). Because, for 
these lattices, tmax. d ° e s not have the minimal value, 3, allowed in the window Ei, 
an IQHF with G H = -jj is expected to be quite unstable against perturbations. 

To the mathematician, the results just described may look disappointing, 
because they do not involve interesting lattices. The situation changes when we 
study the cQHL's belonging to the family Hp := Hp\Hp, corresponding to the 
range E> of values of GH- Because the shift map Sp_i is a bijection between 
Hi and Hp, p = 2,3,4, . . . , the classification of the most stable cQHL's with 
G H £ E>, that is of all the lattices in Hp , reduces to the classification of lattices 
in Hi- But this is not an easy job. Although the number of cQHL's in H\ of 
dimension N < N* is finite, it grows rapidly in Af*. 

In order to make progress, one may attempt to translate physical properties 
of IQHF's (related e.g. to electron spin, or to the spectrum of quasi-particles in 
such systems) into mathematical properties of quantum Hall lattices (related to 
the structure of their Witt sublattices and of the so-called glue group; see [28], [22], 
[27]). This enables one to introduce subfamilies of quantum Hall lattices, likely to 
describe physically realizable IQHF's, whose classification is feasible. 

A prominent finite series of cQHL's in Hf is the one corresponding to the 
values 

2 3 4 5 6 . . 
^ = 3 ' 5 ' 7 ' 9 ' ï ï - ^ 

It is called the E-series, for the following reasons. Let Ö © Tw denote the Kneser 
shape [8] of an integral lattice T, 

oer^crçrço'er^ 

where Tw is the Witt sublattice generated by vectors of squared lengths 1 and 
2. To every GH in the ^-series (2.30) there corresponds a cQHL (r, Q) with the 
property that the ö-sublattice in its Kneser shape is a one-dimensional, odd lattice, 
denoted Oj-, T]y = T ^ is an .E^-root lattice, with k = 7,6,5,4,3, and Q E ö\ is 
orthogonal to T\y [28]. Here we define the lattices T ^ as the root lattices of the 
Lie algebras corresponding to the following Dynkin diagrams: 

and #3 = A2 © Ai <-> o—o-

There is also a cQHL with G H = j% and £max. = 3 . It has a two-dimensional Ö-
sublattice, and its Witt sublattice is the Ai-root lattice. This cQHL may be viewed 
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as an irregular endpoint of the ^-series. For there is no cQHL with G H = j$ and 
^max. = 3 in dimension N < 4, or with discriminant A < 15 and N < 9. 

A lattice T is obtained from its Kneser shape, OÇBTw, by gluing, namely by 
adding cosets of vectors in Ö* © T ^ , to Ö © Tyy- The lattices T^ obtained from 
Ok © r ^ , where r#fc is the E^-root lattice, k = 7,6,5, are unlikely to correspond 
to physically realizable IQHF's, as their dimensions (and the number of quasi-
particles of the corresponding IQHF's) are large. However, they contain quantum 
Hall sublattices, with the same values for G H and £max., which are realistic. For 
example, for k = 7, G H = §, the cQHL obtained from Ö7 © TE7 by gluing contains 
a decomposable, two-dimensional QH sublattice, 3Z © 3Z, and an indecompos­
able, three-dimensional QH sublattice, whose Witt sublattice is the Ai-root lattice 
which, physically, could describe electron spin [28], or an internal symmetry that 
we call "isospin" symmetry — as well as less realistic sublattices of dimension 
4, 5, 6, and 7. All these sublattices yield cQHL's with G H = f, 4 a x . = 3. We 
thus predict that there should be at least three rather stable IQHF's with ojy = §. 
They differ from each other in the rôle played by electron spin (which can be tuned 
by tilting the external magnetic field Bc) or by "isospin". One therefore expects 
a magnetic-field driven phase transition between different IQHF's with G H = §• 
These predictions of our theory are in remarkable agreement with experimental 
data. 

There is also a D-series of cQHL's, leading, e.g., to values of G H = ^ with 
an even denominator dn'- ^u — \ (arbitrary Dn), and G H = 12

4.n? corresponding 
to Tw = ^Dn with n < 7. Let (r, Q) be a primitive cQHL. It has been shown in 
[28] that the sublattice of V orthogonal to Q cannot contain any self-dual lattice. 

Besides the D- and the ^-series, there is also an AN-I-series of cQHL's in 
Hi that could describe single-layer IQHF's if N is an odd integer > 5. They yield 
the values 

*" = WTÏ (2-31) 

of the Hall conductivity ( f j ^ ' A ' " - ) " 
Furthermore, we have classified all two-dimensional, three-dimensional, and 

four-dimensional cQHL's in H^; see [27]. (With an efficient computer program one 
could extend these results to N = 5, 6.) They correspond to the values \, | , | , | , ^ 
rA/r = 3 ì a n d ^ ^ ^ i ^ ^ ^ ^ ^ - ^ - - ^ i n H ^ M A and^f iV = 4i 
\iy °)i <U1LL 3 ' 4 ' 5 ' 5 ' 7 ' 7 ' 7 ' 8 ' 9 ' 1 1 ' 1 1 ' 1 1 ' 13 ' 17 ' 19 ' 21 ' c L l l u 31 ^ i V ^J-

Besides the lattices discussed above, there are plenty of decomposable cQHL's 
in Hi obtained as the direct sum of two cQHL's of the fundamental A-series of 
cQHL's in Hi- They correspond to the sequence 

4ATM 4- N + M 
" - (2N + WM + 1) - " . « = ^ , 3 (2.32) 

of values of the Hall conductivity. Because there is a very stable single-layer IQHF 
with G H = I, described by ( r = Z, Q = 1), one does not expect to see plateaux 
in the Hall conductivity around the points given in (2.32), for values of N and M 
larger than 2 or 3. 
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Finally, our theory provides candidates of IQHF's described by pairs (Te, Qe) 
and (r/l5 Q/7) of cQHL's corresponding to values of G H — G^ — G^ in the window E^. 
These IQHF's would be charge-conjugate to those described by the fundamental 
yl-series in Hf. They are obtained by setting r e = Z, Qe = 1, Tjx = r ^ . i ; see 
(2.27), (2.28). One finds that 

N 
GH = ae - Gh = 1 - ^ ^ j , N = 1,2,3, . . . . (2.33) 

For N < 6, these values of G H coincide with the ones of the .E-series. The ex­
istence (and uniqueness) of these pairs of cQHL's makes it plausible that G H = 
n» Ï3 » ïk> Tf a r e v a ^ u e s o r " t n e Hall conductivity of physically realizable IQHF's. 

Those values of G H that correspond to several cQHL's in Hi (e.g. | , | , | , | , 
. . . ) tend to be values where, experimentally, phase transitions are observed. 

We emphasize that, logically, our theory predicts the values of G H that cannot 
appear in IQHF's — indeed, it predicts plenty of gaps if bounds on £max. and AT" 
are imposed. (For example, it tells us that values of G H = ^p-, with dn very 
large, require large values of either £max.

 o r N and hence should not be observed!) 
Furthermore, it tells us that if an allowed value of G H is observed in an IQHF, the 
structure of the IQHF can be described by a certain set of cQHL's. That's all our 
theory does if no heuristic principles are added to it. 

Next, we propose to sketch how the physics of IQHF's leads us to study the 
mathematics of chiral quantum Hall lattices. 

3 From incompressible quantum Hall fluids to chiral quantum Hall 
lattices via Chern-Simons theory 

The starting point of our analysis is the idea to look for a theoretical description 
of the physics of an IQHF in the limiting regime of large-distance and long-time 
(low-frequency) scales. This limiting regime is called the scaling limit of the sys­
tem, and experience shows that the theoretical description of physical systems 
simplifies in the scaling limit. An IQHF can be characterized by the following 
physical properties. 

(PI) The temperature T of the system is close to 0 K. The longitudinal 
resistance, ÄL, of an IQHF at T — 0 K vanishes, and the total electric charge is 
a good quantum number to label quant urn-mechanical state vectors of the system 
[28], [19]. The charge of the groundstates of the system is normalized to be zero. 

(P2) In the scaling limit, the total electric charge and current densities of 
an IQHF are the sum of N = 1,2,3,. . . separately conserved charge and current 
densities describing electron and/or hole transport in Af separate "channels" dis­
tinguished by conserved quantum numbers. In our analysis, N will be treated as 
a free parameter. (Physically, N turns out to depend on the filling factor v and 
other parameters characterizing the system.) 

(P3) In units where e = h = 1, the electric charge of an electron/hole is 
—1/1. A local excitation of the system composed of electrons and holes and of 
total electric charge gei. satisfies Fermi-Dirac statistics if qe\, is odd and Bose-
Einstein statistics if qe\. is even. 
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The quantum statistics of any local excitation of the system of electric charge 
qe\m E 2 Z + 1 must be Fermi-Dirac statistics (i.e., the Pauli principle must hold), 
and if çei. G 2Z it must be Bose-Einstein statistics. 

(P4) The quantum-mechanical state vector describing an arbitrary physical 
state of an IQHF is single valued in the position of aU those excitations that are 
multi-electrons /-holes. 

The properties (P1)-(P4), believed to be true in every IQHF, are physical 
properties. Part of the art of theoretical physics is to translate physical properties, 
deduced from experiments, into precise mathematical hypotheses. This cannot be 
done in the form of theorems and requires intuition. But once this exciting part of 
the job is completed, one must attempt to use mathematical theorems to derive 
new predictions on the behavior of a physical system. 

The assumption that the longitudinal resistance RL of an IQHF vanishes 
is translated into the mathematical assumption that the energy spectrum of the 
quantum-mechanical Hamiltonian describing the dynamics of the system exhibits 
what is called a mobility gap 6 above the groundstate energy which is strictly 
positive, uniformly in the size of the system. This is actually an assumption that one 
can try to derive from the underlying microscopic Schrödinger quantum mechanics 
of nonrelativistic electrons. This is a difficult, but not hopelessly difficult, problem 
of analysis; see [15] and references given there. 

The quant urn-mechanic al electric charge and current densities of a physical 
system are op er at or-valued distributions 

j(x) = {j°(x),j1(x),...,jd(x)), (3.1) 

where d is the dimension of physical space, and x = (x, t) is a space-time point. 
They satisfy the continuity equation (conservation of electric charge) 

§-tj\x) + V-j(x) = 0. (3.2) 

Let J(x) = *j(x) be the d-form dual to j . Then (3.2) says that 

dJ(x) = 0. (3.3) 

For a two-dimensional system confined to a disk fìCM2, the Poincaré lemma tells 
us that (3.3) implies that 

J(x) = db(x), (3.4) 

where b(x) is a 1-form; b is determined by J up to the gradient of a scalar distri­
bution XJ he-, b has the properties of an abelian gauge field. By property (P2) 

N 

J(x) = Y, Qi A*), (3-5) 
i = l 

where Qi is the unit of electric charge transported by the current Jz, and J% 

satisfies the continuity equation 

dJ\x) = 0, îoii = l,...,N, (3.6) 



The Fractional Quantum Hall Effect 95 

so that, by Poincaré 's lemma, 

J\x) = db\x), i = 1,...,N. (3.7) 

The key idea is to describe the physics of an IQHF in the scaling limit in terms 
of an effective field theory of the gauge fields b(x) = (bx(x),..., bN (x)) . Because, 
by property (PI), an IQHF has a strictly positive mobility gap 6, that effective field 
theory can only be a topological field theory. The presence of a nonzero, external 
magnetic field transversal to the plane to which the electrons of an IQHF are 
confined implies that the quantum dynamics of the sj^stem violates the symmetries 
of parity (reflections in lines) and time-reversal. The only topological field theory 
of the gauge fields b(x) breaking these symmetries and respecting invariance under 
the gauge transformations 

b(x) h-> b(x)+dX(x) (3.8) 

is abelian Chern-Simons theory, with G = MN. This has been shown in [29], [26]. 
(The same conclusion can be reached by starting from the laws (i)-(iv), Section 2, 
preceding eq. (2.5), of electrodynamics in quantum Hall fluids [20], or by studying 
gauge anomaly cancellations [59], [26].) The action functional of abelian Chern-
Simons theory is given by 

SAW = ^ jbT ACdb + r 9 A (b) , (3.9) 

A 

where A = O x M is the three-dimensional space-time of the system, C = (Cij)fj=i 
is some metric on "field space" RN, and TöA(D) is the two-dimensional, anomalous 
chiral action only depending on the restriction of the gauge fields b to the boundary 
9A of A; see [50]. Note that, individually, the two terms on the r.h.s. of (3.9) are not 
invariant under gauge transformations (3.8) not vanishing on <9A. The boundary 
action TgA(b) is chosen such that their sum is gauge invariant (and is essentially 
determined by this requirement [50]). It is quadratic in b |ß A . 

Quantum Hall fluids are quantum-mechanical systems, and hence the Chern-
Simons theory, with action functional S'A given in eq. (3.9), must be quantized. 
Because S'A is quadratic in b, quantization may proceed via Feynman functional 
integrals. This task is not a big deal; see Section 1, and [25], [63], [23]. It turns 
out that the only dynamical degrees of freedom of the theory are localized on dA 
and describe chiral IA(1)-currents [43], [16]. Their dynamics is described by the 
term Tg^h), (after having taken into account the equations of motion of Chern-
Simons theory). The number of clockwise moving currents is equal to the number 
of positive (negative) eigenvalues of the metric C; the number of counterclockwise 
moving currents is equal to the number of negative (positive) eigenvalues of C, 
(depending on the direction of Bc). These are the experimentally observed edge 
currents first predicted by Halperin [32]. We shall focus our attention on the anal­
ysis of IQHF's with edge currents of only one chirality. Then C may be chosen to 
be positive-definite. 
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As sketched in Section 1, states in the quantum-mechanical Hilbert space of 
Chern-Simons theory can be viewed as solutions (j) of the Knizhnik-Zamolodchikov 
equations [23] in n = 0,1, 2 , . . . variables. For our abelian Chern-Simons theory 
introduced in (3.9), these equations take the form 

d4 
dt \ X^ (q*,qj) *l _ ZJ + ^2 (qu,qgn) z% tifa) \ cß, 

^i<i<j<n Zi ZJ » = i J (3.10) 

where 
% = tó,..-,9f)Te R" , i = i , . . . , n , 

are n TV-tuples of charges, mathematically: characters of R^, locahzed at the points 
zi,..., zn, resp., qso is an AT-tuple of boundary charges, 

N 

<q,q'> = E JGii<îj, (3-11) 

z\ ( t ) , . . . , zn (t) aie n paths in the domain ft of the complex plane parameterized 
by a real parameter t, with Zi(t) = z£ ' , and h is a harmonic function on ft, with 
h! = f ; see [16]. 

The solutions of eq. (3.10) are functions on the universal covering space Mn 

of the space Qn\T>, where V is the diagonal fa = Zj, for some i ^ j}. At t = t i , 
with Zi = Zi(ti), for z = 1 , . . . ,n, the solution 0 t l = (j)fa, q i , . . . , zn , qn) of (3.10) 
is given by 

(ß(zi,qi,...,zn,qn) = const. H (*-*,-)<** 
1 < i < j < n 

x exp ( ^ fa.qan) hfa)j, (3-12) 

with (^i , . . . , 2n) viewed as a point of Mn, i.e., fa,..., 2n) stands for (^ i ( t i ) , . . . , 
z-nfa)) ? together with the homotopy class of the path fa(t), • • • , zn(t))tGrt t iî s e e 

Section 1. 
To see that the characters q1-, i = 1,...,N, are charges, we consider the 

charge operators 

f J* = Iti (3.13) 

of the Chern-Simons theory, where Dj is a disk in fi containing Zj, but not con­
taining 2fc, k 7̂  j . From the results in [23] one easily derives that 

( / J1) 0 ( * i , q i , . . . , *„,(!„) = gj-0(^i ,qi , . . . ,«n,qn), (3.14) 

Di 
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i.e., c/)fa,qi,... ,zn,qn) is an eigenvector of the zth charge operator JD J1, with 

eigenvalue gj, for i = 1 , . . . ,N, j = 1 , . . . ,n. By eq. (3.5) the operator detecting 
the total electric charge in the disk Dj is given by 

(3.15) j J = Y,QijJi = /(Q>J>> 
D, i = 1 D3 D3-

and, by (3.14), 0 is an eigenvector of J J with eigenvalue 

N 

goi.(Bj,0) = ^QiQ) = <Q,qj">- (3-16) 
i = l 

Suppose that q̂  = q̂  = q, for some i ^ j . Let us continue the solution 0 
along the path fa(t),... ,zn(t)) from t = ti to t = t2, assuming that 2fc(t) = 0, 
for fc ^ z, j , ti < t < t2, and that (z7;(t),2j(t)) < i < t exchanges z7; and Zj along 
counterclockwise oriented arcs not including any point z^, for k ^i,j. Then 

0ta = exp(z7r(q,q))0 t l , (3.17) 

i.e., the half-monodromy (called "Aharonov-Bohm phase factor" by the physicists) 
of the solution 0 of (3.10) in the pair Zi,Zj is given by 

exp(z7T<q,q)). (3.18) 

Similarly, if Zi(t) = 0, ti < t < t<i, i ^ k, and (zk(t))t <t<t describes a 
counterclockwise oriented loop around the point zi not including any point Zi, 
i^k,£, then 

&a = exp(*27r(qfc,q^))0 t l, (3.19) 

i.e., the monodromy of the solution 0 of (3.10) in the pair Z]~,Zf> is given by 

exp(t27r(qJblq£)). (3.20) 

The groundstate of an incompressible quantum Hall fluid (IQHF) described 
by the Chern-Simons theory (3.9) is the vector 0 = 0O = 1 (n = 0 in (3.12)); the 
charge densities J1 are normalized such that 

f J* (fa = 0. 
n 

The states c/)fa,qi,... ,zn,qn) given in (3.12) might correspond to excited 
states of the IQHF. To make this idea precise, we must find conditions on the 
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characters, or charge vectors q i , . . . , qn that guarantee that properties (P1)-(P4) 
of an IQHF are valid. Thus, suppose that 

N 

fci.faj) = YlQiCé = <Q'%) 
i = l 

is an odd integer. By property (P3), a physical excitation with charges qj must 
then satisfy Fermi-Dirac statistics. Hence the half-monodromy (3.18) must satisfy 

exp (î7r(qj,qj)) = - 1 , 

i.e., 
(q,-,q,-) G 2 Z + 1. (3.21) 

Similarly, if (Q,qj) were even, the half-monodromy (3.18) would have to be +1 , 
and hence 

<«b,q,-)e 2Z. (3.22) 

Summarizing (3.21) and (3.22), we have that 

(Q,q> = <q,q) mod 2, (3.23) 

whenever (Q,q) G Z. 
Next, suppose that qei.(qj) G Z, for some j (i.e., qj corresponds to a multi-

electron/-hole excitation of the fluid). By property (P4), the state vector 0(zi,qi, 
. . . , Zj, qj,..., zn, qn) must then be a single-valued function of Zj (for fixed Zi, i / 
j), provided q i , . . . , qn are the charge vectors of (finite-energy) physical excitations 
of the IQHF. Thus, by (3.20), 

(q^qi) G Z, f o r a l H / j . (3.24) 

Next, if q is the charge vector of a localized physical excitation of an IQHF 
then so is — q, by a principle of charge conjugation. Furthermore, if q and q' are 
the charge vectors of two localized physical excitations of an IQHF then so is 
q + q'j because one may let their positions approach each other arbitrarily closely. 
Thus, the charge vectors of localized physical excitations of an IQHF form an 
additive group, denoted rphys.- By (3.23) and (3.24), the charge vectors q with 
Çei.(q) = (Q>q) £ Z form an integral sublattice, T, in rphys.- Finally, by eq. (3.24) 
(which expresses property (P4)), 

Tphys. Ç T*, (3.25) 

where F* is the lattice dual to T. Because 

tfel.(q) = ( Q , q ) e Z , for all q G T, 

we conclude that Q G T*. Fiirthermore, a single electron or hole is a physical 
excitation of an IQHF. Thus, there exists a vector q G T, with 

(Q,q> = 1, 

i.e., Q is a primitive vector of T*. 
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Suppose that rphyB. =* T. Then there exists some local excitation of the 
IQHF with a charge vector q G rphySi such that q mod r / 0. The electric 
charge gei.(q) = (Qjq)? of this excitation is then necessarily nonintegral (in units 
where e = 1), and its quantum statistics, as described by the half-monodromy 
exp(z7r(q, q)) ^ =bl, is neither Fermi-Dirac nor Bose-Einstein statistics. It deter­
mines abelian, unitary representations of the braid groups Bn, n = 2 ,3 ,4 , . . . , and 
is therefore called abelian braid statistics. Thus, if rphy s , ^ T, there are local exci­
tations in an IQHF with fractional electric charge and braid statistics ( "Laughlin 
vortices"). 

Our analysis has enabled us to safely land on the notion of chiral quantum 
Hall lattices. It should be emphasized, once more, that the general analysis de­
scribed here does not imply that T is a Euclidian lattice. The quadratic form (•, •) 
could be indefinite; see [22]. For simplicity, this general situation is not considered 
here and is presumably not relevant plrysically. 

We are still missing one important point: that the Hall conductivity is given 
by 

OH = (Q5Q>. (3.26) 

To prove eq. (3.26), we study the response of an IQHF to a perturbation given 
by a small magnetic field B in the interior of the region ft. Let B be the compo­
nent perpendicular to H, and let A — Ylu=o A^dx11 be an electromagnetic vector 
potential on A with 

B = (dA)i2. (3.27) 

Now, recall that Qi is the unit of electric charge transported by the current J1. 
Thus, J1 couples to the electromagnetic vector potential A through a term 

iJJiAQiA--èJbiAQidA 
2 T T , 

A A 

(up to a boundary term). The action functional of the IQHF in the scaling limit 
is therefore given by 

SA(b) = -Î- [bT AC db - — [bT AQdA, 
4?r J 2TT J 

A A 

up to a boundary term only depending on b \Q\ and A \QA- The equations of 
motion obtained by variation of SA with respect to b are found to be 

N 

dbj(x) = YjiC^QidA^), (3.28) 
i=l 

for x in the interior of A. Thus, 

Ju(x) = Qjj{2(x) = Qj(dW)i2(x) 

= (^2Qj(C-yiQl)(dA)i2(x) 

= (Q,Q)(dA)i2(x). 
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Integrating this equation over ft, we find, using (3.27), that 

«ei. = Jji2 = (Q,Q)JB = (Q,Q>*. 

Comparing this identity with eq. (2.5), we conclude that GH — (QjQ), which 
proves eq. (3.26). Following [51], [1], [4], one can show that G H can also be ex­
pressed in terms of a first Chern number of a vector bundle of Chern-Simons 
groundstates on a two-dimensional torus of magnetic fluxes — this is physically 
somewhat contrived, though — or as a "generalized index", [20]. These matters 
will be discussed in more detail elsewhere. 

We conclude this report with a list of important invariants of cQHL's (r , Q) 
and their physical interpretations. For details and proofs, see [28], [22]. 

(I) Invariants of Y 

Invariant 

dimT 

A =| r*/r | 

A(Q,Q) mod 8 

genus of T 

Witt sublattice, Vw 

Physical quantity 

number of independently conserved 
currents ( "channels" ). 

number of fractionally charged Laughlin 
vortices (assuming that rphy s . = P*); 

monodromies, 
{exp(i27r(q, q')) : q, q' G T*} of fractionally 
charged Laughlin vortices. 

root lattice of simply laced Lie algebra 
of nonabelian symmetries of IQHF 
in scaling limit. 

(II) Invariants of (r, Q) 

Invariant 

°H = (Q,Q) 
orbit of Q under orthogonal 
trsfs. of T 
"level" £= g.c.d. (A,AGH) 

£max.0\Q) (see (2.17)) 

q* = min (Q,q) 
qer* 

Physical quantity 

Hall conductivity. 
assignment of electric charges 
to quasi-particles. 

relative angular momentum of 
a pair of electrons. 

smallest fractional electric charge / 0. 

These invariants and their physical counterparts permit us to elucidate fairly 
specific physical properties of IQHF's. But this goes beyond the present report. 
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4 Epilogue: Origins of the problems discussed in tins lecture 

In 1986, we became interested in two seemingly unrelated topics: three-dimensional 
gauge theories with a Chern-Simons term in their Lagrangian (or action), and 
the braid statistics of charged particles described by such theories, on one hand, 
and the fractional quantum Hall effect, on the other hand. It had already been 
suggested that these two topics are related to each other [61], [31], but it appeared 
that nobody understood the relationship in precise terms. 

Between the fall of 1986 and 1990, we focused our attention primarily on 
the problems of understanding Chern-Simons gauge theory, the related two-di­
mensional conformai field theories, the general theory of braid statistics and of 
quantized symmetries in two- and three-dimensional quantum field theory, and 
some Jiiathematical-problems in iaiot_theory_ and-the theory-oL braided -tensor 
categories related to low-dimensional quantum field theory. Our main results on 
these topics appeared in [23], [21], [24], [17], [30]; see also [13], [42]. 

In studying Chern-Simons-Higgs theories [25], Fröhlich and Marchetti un­
derstood that abelian, pure Chern-Simons theory was, in essence, just a way of 
reproducing the Gauss linking number. In 1987, during a sabbatical at I.H.E.S., 
Fröhlich was taught the basics of subfactor and knot theory by Jones. Jones ex­
pressed the intriguing idea that, in analogy to the Gauss linking number, more 
general knot invariants should be calculable from some "field theories" defined on 
links. Thanks to the presence of Felder and Gawçdzki at I.H.E.S., Fröhlich also 
acquired some rudimentary knowledge in two-dimensional conformai field theory. 

These strands of ideas naturally merged and led to some preliminary un­
derstanding of braid statistics in low-dimensional quantum field theory and its 
connection with the theory of knots and links [14]. Seminar notes of Jones and a 
preprint by Turaev [55] were very helpful in attempting to make those insights more 
precise. They soon led to the conjecture that, just as abelian pure Chern-Simons 
theory gives rise to the Gauss invariant of links, nonabelian pure Chern-Simons 
theory ought to give rise to more interesting link invariants. Apparently, Schwarz 
independently arrived at the same conjecture, around the same time (1987) [48]. 
Unfortunately, it appeared to be difficult to identify those invariants. It is well 
known that, in 1988, Witten independently came up with the same ideas, identi­
fied the link invariants emerging from nonabelian Chern-Simons theory, and went 
on to define new invariants for three-dimensional manifolds [63]. His work provided 
new motivation for us (Fröhlich and King) to return to the ideas leading to the orig­
inal conjecture. We found a way of deriving the so-called Knizhnik-Zamolodchikov 
(KZ-)equations [38] from formal Chern-Simons functional integrals; see Section 1. 
We showed how to calculate some knot polynomials generalizing the Jones polyno­
mial from solutions of the KZ-equations. The existence of appropriate solutions of 
the KZ-equations was proven by using convergent power series expansions in A = 
±(fc-f-C2)_1, where k is the level of some Kac-Moody algebra and c2 is the dual Cox-
eter number of the underlying Lie algebra [23]. Our results gave substance to Jones' 
idea of constructing invariants of links from some "field theory" defined on links. 

The KZ-equations are the equations for horizontal sections of certain vector 
bundles equipped with flat connections, called KZ-connections. The construction 
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of KZ-connections is based on solutions of the so-called infinitesimal pure braid 
relations (a special case of which are the classical Yang-Baxter equations [3]). In 
fact, every solution of the infinitesimal pure braid relations gives rise to a KZ-
connection. Horizontal sections of vector bundles can be constructed, locally, with 
the help of Chen's iterated integrals, more appropriately called Dyson series by 
the physicists. This method was used in [23]. 

Later on, the results and methods of [23] - see also Section 6.3 of [24] - were 
confirmed and put in a more general context of Vassiliev invariants [56] in [40]. 

In 1990, Morf taught us the basic facts about the (fractional) quantum Hall 
effect. A paper by Halperin [32] made it clear to us that there is a fundamental 
relationship between the quantum Hall effect and the theory of Kac-Moody al­
gebras. We found that the quantum Hall effect is actually described by abelian 
pure Chern-Simons theories [20]. This insight, combined with the theory of the 
chiral anomaly in two-dimensional gauge theory, provided a completely general 
explanation of Halperin's findings (in a more general context than the one he had 
envisaged); see also [26]. Similar results were found, independently and somewhat 
earlier, by Wen [59] and were later confirmed by many other groups; see e.g. [49]. 

The work of Fröhlich and King on Chern-Simons theory now turned out to 
be very useful: it said that physical state vectors of incompressible quantum Hall 
fluids (RL = 0, G H on a plateau) could be constructed in terms of solutions of KZ-
equations derived from certain abelian pure Chern-Simons theories. The known 
monodromy of solutions of the KZ-equations provided an essential clue to under­
standing the rôle played by the theory of integral quadratic forms on lattices in 
the theoretical analysis of incompressible quantum Hall fluids. Our analysis led us 
to the notion of chiral quantum Hall lattices. A partial classification of those chiral 
quantum Hall lattices that appear in the analysis of incompressible quantum Hall 
fluids was accomplished in joint work of Fröhlich and Thiran, with contributions by 
Kerler and Studer. Incidentally, such lattices also appear in algebraic topology (al­
gebraic surfaces in algebraic four-manifolds). Our enterprise has taken quite a lot of 
time and effort. We are grateful to L. Michel for explaining to us many basic facts 
concerning integral lattices. Our results have appeared in [29], [26], [28], [22], [27]. 

Now that the classification of incompressible quantum Hall fluids in terms 
of chiral quantum Hall lattices has reached a satisfactory stage, it would be time 
to develop analytical proofs of existence of incompressible quantum Hall fluids. 
Interesting ideas on this problem have appeared in [64]. The strategy followed 
there leads to rather beautiful variational problems on spaces of sections of some 
fine bundles — somewhat similar to the vortex problems in Higgs models [33] — 
which are described in [15]. 

Another fine of research concerns the definition of Chern-Simons actions on 
noncommutative spaces, in the sense of Connes [7], and the analysis of the cor­
responding Chern-Simons theories [6]. This leads to a unifying point of view on 
topological field theory [63], [62]. The interplay between noncommutative geometry 
and quantum field theory appears to be a promising area for future work [18]. 

I believe we had "fun imagining it" — even though the job has sometimes 
been pretty hard. 
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