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Superselection Structure and Statistics

in Three-Dimensional Local Quantum Theory
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2 Mathematics, ETI-Zentrum, CH-8092 Ziirich

Dipartimento di Fisica dell'Universita di Padova,

INFN Sezione di Padova, 1-35131 Padova

Abstract. We analyze the structure of superselection sectors and the statistics of
"charged” fields in general local quantum theories on three-dimensional Minkowski
space. We find that physical, charged fields may exhibit braid statistics, including

non-abelian braid statistics. We argue that models with (non-abelian) braid statis-

tics can be constructed from (non-abelian) {hree-dimensional gauge- and matter fields
with a topological Chern-Simons term in the effective gauge ficld action. It is con-
ceivable that our analysis explains some qualitative aspects of the {ractional quantum
Hall effect and of certain high T superconducting materials, but that remains spec-

ulative.
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1. Introduction

Recently, interest in quantum field theory in three space-time dimensions, in par-
ticular in gauge theory with a Chern-Simons term in the Lagrangian, has been revived
through the analysis of two-dimensional phenomena in condensed matter physics: In
Laughlin’s approach to the fractional quantum Hall effect excitations carrying frac-
tional charge and fractional spin, whose statistics is intermediate between Bose- and
Fermi statistics, play an important role [1,2]. Excitations with similar properties are
also expected to arise in various models of high T, superconductivity [3]. The detailed
mechanisms that give rise to such excitations in strongly correlated, two-dimensional
many-body systems do not appear to be well understood, yet. There are, how-
ever, phenomenological Landau-Ginzburg type models [1] which exhibit fractionally
charged excitations with inlermediate statistics which may yicld a good description
of the excitations in fractional quantum Hall systems. The phenomenological models
are abelian gauge theories with a Chern-Simons term in the action; in particular,
abelian Higgs models with Abrikosov vortices [4] (originally introduced in the theory
of type I superconductors) have been discussed in detail [5]. The effect of the Chern-
Simons term is that a region in two-dimensional space through which a magnetic flux
threads automatically carrics an clectric charge proportional to the magnetic flux.
Conversely, an electrically charged particle in an abelian gauge theory with a Chern-
Simons term automatically carries magnetic flux proportional to its charge. This
phenomenon is already encountered at the classical level. The intermediate statistics
of such particles can then be understood to be a consequence of the Aharonov-Bohm
eflect.

It is natural to ask what happens in a non-abelian gauge theory with Chern-
Simons term? "Effective” non-abelian gauge fields may be dynamical degrees of {ree-
dom of strongly correlated iwo-dimensional many-body systems. One might wonder
whether such systems exhibit particle-like excitations whose statistics is described
by some non-abelian version of the Aharonov-Bohm effect. This question is briefly

addressed in Sect. 2 of this paper: We argue that the answer is aflirmative, although
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in this paper we do not present a complete analysis.

In the absence of a detailed understanding of the dynamics of concrete physical
systems it may be wise to ask whether the existence of particle-like excitations with
{ractional spin and intermediate statistics, so-called braid statistics, is compatible

with the general principles of local quantum theory? In particular, we are interested

in knowing whether particles with non-abelian braid statistics may arise in local
quantum theory? To give an answer to such questions is the main purpose of this
paper. Our analysis is carried out within the algebraic approach to quantum field

theory, as developed by Haag and Kastler [6], Doplicher, Haag and Roberts [7] and

extended by Buchholz and Fredenhagen and by Doplicher and Roberts (8]. Although

the starting point of our analysis is chosen in accordance with local quantum field

theory, neither strict locality nor Poincaré covariance of the theory are fundamental in
the derivation of our results. We therefore believe that the main findings presented in
this paper extend to non-relativistic many-body systems (including two-dimensional
quantum-mechanical lattice systems) with rather minor changes.

The organization of our paper is as follows. In Sect. 2, we bricfly recall the basic
properties of {hree-dimensional abelian Higgs models with Chern-Simons term which
describe particles with fractional spin and intermediate statistics, so-called anyons
[9]. We also present a (somewhat conjectural) description of the main features of non-
abelian gauge theories with a Chern-Simons term in three space-time dimensions.

The purpose of the discussion in Sect. 2 is to extract from the discussion of
models some basic structural propertics of local quantum theory in three space-lime
dimensions which may serve as a starting point of a model-independent, genecral
analysis.

In Sect. 3, some special features of relativistic quantum physics in threc space-
time dimensions are recalled. The algebraic approach to local quantum theory is
then reviewed, and a basic result, due to Buchholz and Fredenhagen (8], concerning

the localization properties of one-particle states (or _representations) is stated.

In Sect. 4, we formulate the starting point of our analysis. We describe the
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basic properties, in particular the localization properties, of "charge-transfer” oper-
ators which play a fundamental role in the theory. This requires some discussion of
the duality postulate [7] in the algebraic approach to local quantum theory which
expresses the physical idea that the vacuum cannot carry a non-abelian charge [7].

In Sect. 5, we show how one can construct "many-particle sectors” and charged
"fields” which make transitions between different sectors. As shown in (8], charged
fields can always be localized in space-like cones of arbitrarily small opening angle.
The charged fields correspond to the gauge-invariant Mandelstam (string-) operators
in gauge theory.

In Sect. 6, we study the statistics of charged fields: It turns out that their

statistics is described by two unitary statistics operators, generally distinct, which

are shown, in Sect. 7, to determine unitary representations of the braid groups, By,
on n strands (the groupoids of coloured braids, respectively), for n = 2,3,4,... .

In Sect. 8, translation- and rotation-covariant sectors are investigated. The spin
of an irreducible covariant sector is defined, and a spin addition rule (spin-statistics
connection), in agreement with what was previously found in anyon models [5), is
established.

Finally, in Sect. 9, we briefly outline the construction of collision (scat tering)
theory within our general framework, drawing on results in [7,8]. Wave functions
of asymptotic states are introduced, and the braid statistics of fields is shown to
correspond to a braid statistics of asymptotic particles.

In a companion paper, we shall show that the statistics of charged fields can be

described neatly in terms of a family of braid- and fusion matrices with properties

identical to those used to describe the monodromy properties of conformal blocks
in two-dimensional conformal field theory. These braid- and fusion matrices can be
viewed as invariants of three-dimensional quantum field theory and can be used to

construct invariants for knots and links in S® related to the Jones polynomial.

In many ways, this paper is a review paper. We do, however, believe that some

of our observations and results are new.
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2. Three-dimensional gauge theories with braid statistics.

In this section, we summarize some results obtained in the analysis of anyon
models, [5,9,10,11]. We consider a three-dimensional U(1)-Higgs model with a (topo-
logical) Chern-Simons term

1

mm AAdA (2.1)
in the action which breaks parity invariance. If the gauge coupling constant and the
parameters of the Higgs potential of the model are chosen appropriately the physi-
cal Hilbert space of the theory contains massive, stable one-particle states carrying
magnetic flux (vorticity) +1 or -1 and an electric charge 2. They correspond to
vortex solutions of the classical equations of motion. The superselection sectors of
the theory are labelled by their total vorticity n € Z. These results can be proven
rigorously in a lattice approximation (5],

An application of the Buchholz-Fredenhagen theory [8] to the present situation
permits one to construct "field operators” ¥(C), localized in space-like cones, C, with
the property that 4(C) has non-vanishing matrix elements between the vacuum, {2,
of the theory and one-particle states of non-zero vorticity. If the coupling constant p
in front of the Chern-Simons term (2.1) is non-zero the gauge field of the theory is

massive [12], and vortices carry an electric charge, ¢, with

g = 2Zpn, AM.MV
n is their vorticity. Particles with magnetic flux and electric charge have been called
anyons [9]. The spin, s, of an anyon can be determined by performing a 2m-rotation

of a one-anyon state, and one finds that

L 2

§ = —
dp

= p (mod Z). (2.3)

In (2.2) and (2.3), our units are such that the gauge coupling constant, i.e. the

electric charge, is equal to one,

Similarly, a physical state with total vorticity n € Z has spin (or angular mo-

mentum)
n(n —1)

H\.:” 2 —
LU ns + 2

(28) (mod 7), (2.4)

Superselection Structure and Statistics in . . . 341

with § = pu = s [5]. The number # will turn out to describe anyon statistics.
Following [7,8] one can develop a Iaag-Ruelle collision theory for anyons, pro-

vided the mass, m, of the one-anyon states is positive [5]. The momentum-space

wave functions,

N: = H‘:ﬁﬁ:@:... Lu:&ﬁzv, AN.UV

describing n asymptotic anyons with 3-momenta py,... ,pn on the mass shell V,, =
{p : p* = m?,po > 0} and charges ¢; = + 2, 1 = 1,...,%, belong to an asymp-
totic Hilbert space of multi-valued functions: By performing a 2m-rotation on the
asymptotic state described by fn we find that

n

U(2r)fu = malwi.mhlt AM .E.vu ~ns)] fn - (2.6)

Thus, for s ¢ 1Z, fn cannot be single-valued on momentum space (Vin)™™. Defining
M, = (Vo)™ \ D, 2

where D is the diagonal set {(p1,...,Pn): Pi = pj, for some i # j}, one can show
that f, determines a single-valued function on the universal cover, M, of M,.. The
fundamental group of M, is the pure braid group on n strands, P,.

If the n anyons all have the same charge, g, then the Hilbert space of asymptotic
n-anyon-states carries an abelian representation, R, of the braid group on n strands,

By, given by
R(r¥l) = e¥?mine’ (2.8)

where € = q/2, = £ 1, and 7; is the it generator of Dy; see [5,10] and Sect. 7
for further details. Thus if g is an integer then f, obeys ordinary Bose statistics,

while if p2 is half-integer fn obeys Fermi statistics. For u i w.\; fn has intermediate

(6—)statistics determined by the statistics parameter 6 = p, and the following spin-

statistics conncction holds; see equ. (2.3).
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It is important to describe the observable (gauge-invariant) fields of the model.

Among such fields are Wilson loops

W(L) = N(ezp i &?ax &), (2.10)

the square of the Higgs field

N(#*(z)), (2.11)

and gauge-invariant combinations of the Higgs- and the gauge field (Mandelstam
operators)

Au(€)dEr) $(y))- (2.12)

N(¢(z)* E%.\.

Y=y

In equations (2.10)-(2.12), the symbol N denotes a normal ordering prescription, £
is a (space-like) loop in configuration space, and 7, is a space-like path from z to y.

In an abelian theory the Wilson loop- and Mandelstam operators can be regularized

/.

where j is a vector-valued function on M? with div j, = 6, — §,. In particular, the

by replacing
Adeae by [ &€ 740

Wilson loop operators, W(L), can be approximated by bounded operators (" Wilson

operators”)

W(j) = expi \ &€ 4(€)Au(E) (2.13)

where j is a vector-valued function with support in some ring surrounding £ located
in a spacelike surface, see Fig. 1, and satisfies the equation div j = 0 which ensures

the gauge-invariance of W(j).

Supp j

Fig. 1
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Similarly, after smearing out N(¢*(z)) with some test function depending on z and
the regularized Mandelstam operators with test functions depending on z and y, these
operators can be approximated by bounded operators localized in bounded regions
of M3,

The observable algebra A(O) associated with a bounded, open region © C M?
is the (weakly closed) algebra generated by bounded approximations to the oper-
ators introduced above localized in @. In this way we obtain a net of (weakly
closed) observable algebras, { A(©)}, indexed by bounded open regions @ C M?*, with
A(0;) C A(Oz) if O C Oy, and [4,B] =0, for all 4 € A(O;) and all B € A(O;)
if O; and O are space-like separated. The algebra of quasi-local observables, A, is
defined by

A = U

O bounded

A(0) (2.14)

where a: indicates closure in the operator norm. Similarly, for an arbitrary un-

bounded region § C M3, e.g. a cone, we define

A(S) = U
O bounded
oCs

A(0) (2.15)

The commutant of A(S) on a given superselection sector of the theory is denoted by
A(S)'. Tt is automatically weakly closed, but its structure depends on the superse-
lection sector on which it is constructed. In contrast, the algebras A(O), A(S) and
A are sector-independent.

The physical property that the vacuum does not carry a non-abelian charge

is expressed by Haag's duality postulate, stating that on the vacuum sector of the

theory
(2.16)

for any bounded open double cone @ C M?*, with O’ the set of points in M?® space-
like separated from ©. Equ. (2.16) can be expected to hold in our models, (for our
definitions of A(Q) and A(Q")). In the algebraic approach to local quantum theory,
the theory is formulated in terms of the net { A(O)} satisfying (2.16) and the algebras
A(S), A, [6,7,8].
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Next, we consider a physical state of arbitrary, but fixed total vorticity n de-
scribing, among other particles, a charged vortex (anyon) localized in a space-like
cone C; containing the origin, 0; (see Sect. 3, Theorem 3.2, for a precise definition of
space-like cones). Let C; be the space-like cone obtained by rotating C; through an
angle #. Let Cn(0) denote the operation of transporting the anyon initially localized
in C; to C, along a sequence of cones C(6"), with 0 < ' < 6, where C(8') is obtained

from C; by rotation through an angle ¢'; see Fig. 2.

€2

6' e(g")

Fig. 2

On the basis of the results in [5], one can argue that C,,(#) can be approximated, in

the weak operator topology of the sector with total vorticity n, by Wilson operators,

W(jr), localized in the regions Op(#) indicated in Fig. 3.
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Fig. 3
Explicitly,
C.(8) = Sbllw.oi Wi(jr), (2.17)

for a suitable choice of the sequence {jp}, R =1,2,3,..., of currents.

Let S be a space-like cone (or the causal complement of a space-like cone) con-
taining QA%Q C(8"). From our choice of the sequence {7}, with supp .L‘_.: C On(8),
see Fig. 3, and from (2.17) it follows that

Cul6) € A(S):, (218)

where A(S);; denotes the closure of the algebra A(S) in the weak operator topology
of the sector with total vorticity n.

Let S;z = {z e M* : (z — y)? < 0,V y € C; UCy} denote the causal complement
of the space-like cones C; and C,. It follows easily from the definition (2.15) of A(S;3)

and from (2.17) that C,,(#) commutes with all operators in A(S);), i.e.

Ca(l) € A(S12)n
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where A(S)), denotes the commutant of the algebra A(S) on the sector with total
vorticity n. Hence

Ca(8) € A(S12)n, N A(S); . (2.19)

Next, let C,,(8 —27) denote the operation of moving the vortex initially localized
in C; to C; along a sequence of cones C(#'), where C(¢') is a rotation of C; through

an angle §', with 27 — § < §' < 0; see Fig. 4.

It is interesting and important to ask whether the operators C,(6) and C,,(§ —27) are
identical, or not? A priori thereis no reason why Cr(8) and C,,(8~27) should be iden-

tical, since in three space-time dimensions the path of rotations through increasing

angles §' € [0,6] and the path of rotations through decreasing angles §' € [§ — 2r,0]
are not homotopic, as paths in the three-dimensional Poincaré group. Their compo-
sition (with the orientation of one path reversed) is a non-contractible loop in the

Poincaré group P} =15 0(2,1). The analysis of the anyon models in [5] shows that

Ca(8) = e ¥ C.(6-2m), (2.20)
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where the phase ¢, = (1 — 2n)y, (see (2.4)), depends on the vorticity n of the
sector on which the anyon is transported from C; to C;. If the algebra A of all
quasi-local observables is represented irreducibly on the sector labelled by n then
Cn(8)* Cn(8 — 27) must be a multiple of the identity, by Schur’s lemma. Hence the
relation (2.20) is a very general fact not specific of the model we consider.

It follows from interesting results of Buchholz and Fredenhagen [8] that one can
choose C,,(8) or Cpn(8 — 27) to be sector-independent, i.e. independent of n. Bqu.
{2.20) then shows that it is impossible to choose Cy,(#) and C,(6 — 27) to be sector-
independent. It should be emphasized that the phase factor ¢f¥" = CL(8) Cn(6 -
2m)* only depends on the dynamics of the theory and the sector on which anyon
transport is carried out.

Next, let C;,C2,C;3 and C4 be four space-like cones such that €; UCy and C3 UCy

are space-like separated, as indicated in Fig. 5.

~a e

Fig. 5

Let C,(1,2) denote some anyon transport from C; to C; and Cy(3,4) an anyon
transport from C; to C4. One may ask whether the two operators C,.(1,2) and C,(3,4)
commute, (as one might guess from the circumstance that the regions C; U C; and
C3UCy are space-like separated). Actually, using (2.17) and the "dual” commutation

relations between Wilson operators and "vortex creation operators” one finds that

Ci(1,2) Gu(8:4) = % C.(3,4) Cil1,2);
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where ¢ is a phase factor proportional to £+ . One can check that if ¢ vanished
anyons would have ordinary permutation- (Bose- or Fermi-) statistics, rather than

braid statistics, in conflict with the results of [5].

The upshot of our discussion is that anyon transport, or, more generally, "charge”
transport, in three-dimensional gauge theories (with a Chern-Simons term in the

effective gauge field action) can be path- and sector-dependent and that this is inti-

mately related to the braid statistics of anyons. In Sect. 4 we shall describe a starting
point - see assumptions (C1)-(C3) - for a general, model-independent analysis which
incorporates the insights just gained in a reasonably intuitive way.

Our analysis will leave open the possibility that "charged” fields in local quantum
theory might exhibit non-abelian braid statistics, i.e. a statistics described by higher-
dimensional, non-abelian representations of the braid groups. In the abelian theories
discussed in [5,9,10] only one-dimensional, abelian representations of the braid groups
appear. One must therclore ask whether there are gauge theories with a Chern-
Simons term,

k

N
.| > x . 2.2
e :E §+m>>>>é;mﬁ (2.21)

in the action, besides non-topological terms involving the gauge field 4 and some
charged malter ficlds, 1, exhibiting non-abelian braid statistics? Although such
theories have not been analyzed in detail (see, however, [12,13]), it is a plausible
conjecture that they describe "coloured” particles with non-abcelian braid statistics.

More precisely, consider a gauge theory with a non-abelian, simply connected

compact gauge group, G, and action

k 2 1 ;
S[4] = e ?T»>§+m.m>>>b+mm‘\im.v

+ \,\@%\135@. (2.22)

One can argue that this theory does not confine (colour-) charge, for & 3 0, and that
the statistics of physical charged fields or -particles is independent of the values of g
(0 < g <o0), A >0and m > 0,i.e. thatitis an invariant of quantum field theory

only depending on k and on the nature and number of the matter fields 4, .
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Recently, the purely topological Chern-Simons theory with action given by (2.21)
has been solved exactly by Witten [13]. He finds that the ”statistics” of static colour
sources is described by certain non-abelian representations of the braid groups which
he uses to propose a novel approach to the construction of invariants for links and
knots generalizing the famous Jones polynomial. One can argue that Chern-Simons
theory is the large-scale asymptote of non-topological theories whose dynamics is
given by (2.22). Hence the statistics of physical, charged fields in such theories may
be expected to be described by the non-abelian representations of the braid groups

that Witten finds. This will be elaborated upon, elsewhere.
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3. Local, Relativistic Quantum Theory

in Three Space-Time Dimensions

According to Wigner [14], a relativistic particle is described by a unitary, irre-
ducible representation of the quantum mechanical Poincaré group, .UHL the universal

covering group of the proper Poincaré group. In three space-time dimensions
Pl = 50(2,1) x R°.

The homogeneous Lorentz group S0(2,1) is isomorphic to SL(2,R) which can be
pictured as an open, full torus, i.e. it is homeomorphic to RZ x §'. The circle §!
corresponds to the subgroup of space rotations. Thus 7,(SL(2,R)) = Z, and the
covering space is homeomorphic to R*. The topology of SL(2,R) has interesting
consequences for the structure of relativistic physics in three dimensions.

Unitary, irreducible representations of w.u.ﬁ can be constructed by choosing a

Lorentz-invariant subset
Vm={pe R :p* =m?}, m* €R, (3.1)

of momentum space. For those representations which describe physical particles, m?

is non-negative; m > 0 is the mass of the particle. Then V,, has two disconnected

components, and one picks the component
Va={peR®:p* =m? p’ >0} (32)

One then fixes an energy-momentum vector p € V! and considers the subgroup of
w.dﬁw, 1) which leaves p invariant, isomorphic to the little group. Unitary, irreducible
representations of \U.ﬁ can be constructed from unitary, irreducible representations of
the little group corresponding to a mass hyperboloid VT,

For m > 0, the little group is the group of space rotations. Its covering group
is the additive group of R, so its irreducible representations are labelled by a real

number, s, the spin of the particle. The little group for massless particles, with
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m = 0, is also given by R, and its irreducible representations are labelled by a real
number, s, the helicity of the particle.

In conclusion, a relativistic particle in three space-time dimensions is character-
ized by its mass m > 0 and its "spin” (spin or helicity) s € R. These results are due
to Bargmann (14].

Nexi, we wish to discuss local, relativistic quantum theories in three space-
time dimensions admitting a particle interpretation. We shall sce that for certain
simple topological reasons connected with three-dimensional Minkowski space there
are two essentially different types of theories. The starting point of our analysis is
taken over from a basic paper of Buchholz and Fredenhagen (8] which generalizes the
fundamental analysis of Doplicher, llaag and Roberts [7]. The analysis of Buchholz
and Fredenhagen concerned theories in four or more dimensions. We shall see that,
in three dimensions, some essential changes are required and new phenomena appear.

Common to the analyses contained in [7,8] and in this paper is the algebraic
formulation of local, relativistic quantum physics proposed by laag and Kastler [6]:
The observables of the theory which can be measured in open, bounded space-time
regions O C M? are elements of some von Neumann algebra A(©) with unit. The

algebra of all local observables, A, is defined as the C*-inductive limit of the local

algebras, A(O), i.e.

= o 3.3
A= U AG), o )
where the closure  is taken in the operator norm. If C is an unbounded region in
M? we define

AlC) = Grhn A(O), (3.4)

where, again, the closure is taken in the operator norm. If two space-time regions,

C, and Cs, are space-like separated we write C; C;, and locality is formulated as

the statement that
[A,B]=0, for A€ A(Cy), B e A(Ca). (3.5)

Let A°(C) denote the subalgebra of all those operators in A which commute with all
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operators in A(C). Then locality implies that, for C; C,,
A(C) < A%(C). (3.5a)
For a space-time region C we let C' denote its space-like complement, i.e.
C'={zeM :(z-y)t <0, forall yeC}. (3.6)

Then (3.5) implies that
A(C) € A°(Ch). (3.7)

that A(Cs UCy) D A(C3) V A(Cy), (the C*algebra generated by A(C3) and A(Cy)).

Of course, it is also always assumed that if C; C C; then A(C;) C A(C;) and

Next, we formulate relativistic covariance. Let (A,z) € ﬂ.ﬁ be some Poincaré

transformation and let C be some space-time region. We define
Ciaey ={yeM’ : A7y —z) € C}. (3.8)

We assume that ﬂ..ﬂ is represented on A by a group of “automorphisms {a,,z) :
(Az) € ﬂ.: such that
aa,a)(A(C)) € A(C,) (3.9)

Remark. o is a "automorphism of A if « is linear, a(A) = A, o(d - D) =
a(A)a(B), for all A,B in A, a(A*) = a(A)*, for all A € A. The subgroup of
*automorphisms representing space-time translations (I, z) is denoted by {a; : z €

M?*}, the subgroup of space rotations,

1 0 0
{(A,0) : A =| 0 cosf sind |} (3.10)
0 —sind cosf

by {ag: -7 <8 <7}

In the next section, we shall add an assumption (Haag duality [7]) expressing

the idea that the net {A(Q) : O C M?®} is maximal, i.e. chosen to contain as
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many operators as compatible with the requirement of locality, and expressing the
assumption that the vacuum does not carry a non-abelian charge.

So far, we have described the structure of the observables of the theory. In order
to extract physical information from such a theory, we must study representations,
7, of the algebra A of local observables on (separable) Hilbert spaces, H. In general,
a C*algebra admits a vast number of inequivalent representations most of which are
uninteresting for particle physics. To bring order into this situation, we adopt a
selection criterion formulated by Borchers (see [8,15]) that singles out those repre-
sentations of A which are relevant for particle physics: A representation 7 of A is
called covariant if there is a strongly continuous unitary represeutation, U = Uy, of

gw.ﬁ on the representation space H = H, of 7 such that
m(oa,z)(A)) = Qﬁ>ﬂaui.&um~ﬁ>,uvl. (3.11)
for all (A,z) € ﬂru.ﬁ and all 4 € A.

Definition 3.1.

(1) A covariant representation = of A is called a positive-energy representation if

the joint spectrum, 3, of the generators, (P, P), of space-time translations

{U(z) = U(1l,z) : = € M*} satisfies the relativistic spectrum condition, i.e.

Mumw.Tu?mmu%uwPEwS (3.12)

(2) A positive-energy representation 7 of A, on H is called a (inassive) one-particle-

representation if the set V;} = {p: p* = m?,py > 0} is contained in 3 and

Y CcViu{p:p’ 2 M po >0} (3.13)

for some M > m > 0. [The representation, U, of quH restricted to the spectral
subspace H,,, C M corresponding to the subset V;} of 3~ is then a direct sum
of the irreducible representations, characterized by their spins s € R, that were
discussed at the beginning of this section; m and s are the mass and spin of a

particle.]
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(3) A positive-energy representation (r, ™) of A is called a (massive) v

tation if 3" contains 0, and

> c{o}u{p:p* 2 4 po >0}, (3.14)

for some p > 0, called mass gap.

O

In [8], it is shown that Definition 3.1 still makes sense if one only assumes that
space-time translations are unitarily implemented and 53 € V*; i.e. rotalions and
Lorentz boosts are not important. The reason for this is a result of Borchers and
Buchholz [16] which says that locality and the assumption that 3 C V7 already
imply that the lower boundary, 8}, of ¥ is Lorentz-invariant, and Y\, 3 is
Lorentz-invariant. However, in our analysis space rotations will play an important
role, and we shall later assume that the entire Poincaré group is represented on H
by unitary operators.

It should be mentioned that, as has been shown by Borchers [15], the operators

Ux(z) can be chosen to belong to the weak closure, 7(A) , of m(.A), i.e. energy- and
momentum operators can be approximated by local observables.

We now recall a basic result due to Buchholz and Fredenhagen [8]:

Theorem 3.2. Let (w,H) be a massive one-particle representation of A on a separable
Hilbert space!H. Then

(1) There exists an irreducible, massive vacuum representation (g, #) of A such that

for arbitrary A € A and every sequence of points z € M?® tending to space-like

infinity
w—lim w(agz(A)) = w(A4) 1 (3.15)

z

where wo(A) =< 0,7 (A)2 >, and O € H, is the unique (Poincaré-invariant)

vacuum state.

Y'Y will usually be separable if it contains a finite number of distinct massive one-

particle states.
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en double cone whose closure O is space-like se

(2) Let O be some

the origin 0 € M®, Let a € M®. Then the region

C=a+ U AQ (3.186)
A>0

is called a space-like cone with apex a.

Let C be an arbitrary space-like cone. Then the restrictions of 7 and g to the

algebra A°(C) are unitarily equivalent, i.e., there exists an isometry Ve of 1 onto
Hy such that
Ver(A) = mo(A)Ve, for A € A%(C). O (3.17)

This important result motivates the following definiton.

Definition 3.3. [8] A representation (m,H) of A is said to be localizable in cones

relative to a vacuum representation (wy, Hy) if for any space-like cone C there exists

an isometry V¢ from H onto H, such that
Ver(A) = mo(A) Ve, for all A € A°(C). (3.18)
The family of all such representations of A is denoted by Ly,. O

It will turn out that not only massive one-particle representations, but also
representations of A describing many ("charged”) particles belong to Ln,, [8]. We
thus conclude that those representations (m, H,) of A which are relevant for particle
physics, at least in theories with a positive mass gap and only massive, isolated
one-particle states,? are all vacuum representations and all covariant positive-energy
representations (m,H,) of A which are localizable in cones relative to some vacuum
representation (mg, o) of A. The family of all such representations is denoted by

cov
proe.

2 Representations localizable in cones appear to be adequale in theories with massless

particles, as well [17].
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The total Hilbert space, Hyhy,, of the theory is defined as
\_Iu_ﬂ;:. = m.w xm@ww‘ Ho Aw.uwv
It carries a strongly continuous unitary representation, U, of q..u.ﬁ.

v=9o ¢ U (3.20)

satisfying the relativistic spectrum condition. The representation spaces H, are

called (superselection) sectors of the theory.

Qur purpose, in the next sections, will be to construct unobservable field op-
erators, ¥, which make transitions between different superselection sectors, H, and
Hyry m, 7' in Lng, of the theory and to analyze the spin carried by these operators
and their commutation relations, i.e., the statistics of the field operators 1. We shall
encounter two very diflerent structures: Local fields carrying integral or half-integral
spin and satisfying (para-)Bose or (para-)Fermi statistics [7,8]; and fields localized in
space-like cones carrying fractional spin (¢ $Z) and satisfying braid statistics. The
last case represents the new structure analyzed in this paper; see also [32,18).

There is no loss of generality, if we restrict our analysis to a single vacuum repre-
senation (g, Ho) of A and the associated family £, of representations 7 localizable

in cones relative to the given my.

Remark. Throughout our analysis it is crucial that we are considering a space-time
of dimension larger than two. In two space-time dimensions, a one-particle repre-
sentation can be connected to two distinct vacuum representations. The analogue of
Theorem 3.2, (1), would be

w—lim w(a,(A)) = E%TC.F

z—+too

where wi and wy can be distinct vacuum states [19].
Let O be a double cone. Then, in two-dimensional space-time, @' is the union,

O~ U O™, of two disjoint wedges, @~ and OF, space-like separated from @; @~ lies
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to the left and O to the right of O. The correct modification of Theorem 3.2, (2) is

then that there exist isometries V* from M, to Hi such that
VER(A) = mo(A)VE, for all A € A(OF),

if O is chosen sufficiently large, [8,19].
The ensuing general mathematical structure of local, relativistic quantum theory

in two space-time dimensions, in particular, the braid statistics of fields, has been

studied in detail in [19,32,22,18,31].
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4. Localized Morphisms, Duality and Enlarged Algebras.

H\ ” ||l||| _. n
mph Q%Z_u .\»AGVUnpmmﬁmsmapusmon?w_?.».?o.iovvnmﬁwncsﬁwov.
resentation of A and (w,H) a (covariant, positive-energy) representation localizable
in cones relative to (wg,Hy), see Definition 3.3, i.e. there is an isometry, Ve, from H
to Hq such that

Vem(A) = mo(A)V, for all A€ A%(C), (4.1)

where C is an arbitrary space-like cone. It will not matier whether = is a massive
one-particle representation or whether 7 describes massless particles. Massive one-
particle representations were only important to motivate the notion of representations

localizable in cones; (Theorem 3.2).

Since C in (4.1) can be chosen at ones convenience and V¢ is an isometry, it

follows that ||w(A)|| = ||m(A)|l, for all A € Q%__Su A(O), hence for all 4 € A.

Therefore any ™ € L, can be regarded as a representation of mo(.4). We shall

identify mo(.A) and A in the following.

Thanks to the existence of isometries, Ve, from H, to H,, we may define a

representation p¢ of A on Hp equivalent to 7 by setting
pc(A) = Ver(A)V?, forall A€ A (4.2)

By (4.1)
pc(A) =m(A) = A, forall A€ A%(C). (4.3)

We shall say that p¢ is localized in C. Let C; and C; be arbitrary space-like cones.
Then, for a given m, p¢, and pe, are unitary equivalent representations of A, by

(4.1),(4.2). Hence there exists a unitary operator I'(C;,Cz) on M, such that
I'(Cy,Ca)pc,(A) = pe,(A) T(C1,Ca). (4.4)
forall A e A If A€ A%(Cy) N A%(C;) then by (4.1)

I(C1,C:)A = AT(C1,Ca). (4.5)

w
1
t
1
m
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Unfortunately, it is not true, in general, that pc(A) C A, and it docs not follow
from (4.5) that I'(Cy,C2) € A. Given two representations, p1 and pa, it is therefore
not possible, without further assumptions, to define their composition, py o pa(A) =
p(p2(4)),A € A But composition of representations, pi, localized in cones relative
to (m, M) is a crucial device to describe multi-particle states of arbitrary charge and
end up with a theory that has a precise mathematical structure. Al this poini one

may envisage two different sets of auxiliary assumptions permitting the composition

of representalions p; leading to qualitatively different quantum theories.

(A) Doplicher, Haag and Roberts [7] start from the assumption of duality for

double cones: Let B be a C*- (or von Neumann) algebra of bounded operators acting

on a Hilbert space Hy. We define B' to consist of all those bounded operators on
H, commuting with all operators in B; B' is called the commutant of B and is
automatically weakly closed, i.e. a von Neumann algebra. The weak closure of B is
identical to (B')' = B". Doplicher, Haag and Roberts assume that, on the vacuum
sector Ho,

A0 = A(0), (4.6)
for any bounded, open double cone O C M?. [In more precise notation, (4.6) is the
statement that mo(A(Q")) = m(A(O)).] Under suitable assumptions, (4.6) implics
that the vacuum sector cannot carry a non-abelian charge [20].

Doplicher, Haag and Roberts then consider theories for which the representations
pc are strictl localized:® There exists a bounded, open double cone O such .SEF with
Pc = POy

po(d) = A, forall A€ A(O")
Then, for A € A(Q), po(A) commutes with all operators in A(Q'), so that, by (4.6),
po(A) € A(O). Hence po(A) € A, ie. poisa *morphism of A; (p is a “morphism
of Aif p is a linear map from A into A,p(A- B) = p(A)p(B), and p(A*) = p(A)).
As shown by Doplicher, Haag and Roberts the unobservable (charged) fields

reconstructed from strictly localized morphisms of A obey (para-)Bose or (para-)

3 This is well motivated in theories without gauge fields.
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Fermi statistics and carry integral spin or half-integral spin, respectively. [The spin-
statistics connection is well known in three-dimensional, local quantum field theory,
in the sense of Wightman [33]. In the algebraic setting, the three-dimensional theories

were not considered explicitly in [7], but the results claimed above are implicit in [7].]

(B) Buchholz and Fredenhagen [8] introduce a version of the duality postulate
more convenient for their purposes: If C is an arbitrary space-like cone then

A(C)" = AlC), (4.7)

where B” denotes the weak closure of an algebra, B, of operators acting on Hy;

(again we omit explicit mentioning of the vacuum representation). By (4.5), the

w

unitary intertwiners I'(Cy,C,) introduced in cqu. (4.4) then belong to A(C)", where
C is a space-like cone, or the causal complement of a space-like cone, containing

€y UC,y. Moreover, by (4.3),
pc(A(C)) € A(€), (4.8)

for any cone C containing C.

The duality postulate (4.7) could serve as an adequate starting point for the
general analysis of statistics presented in Sects. 5 - 8. It does not, in general, exclude
braid statistics, because it does not imply that I'(C;,C,;) € AC)H) v A(C2)”. How-
ever, we shall base our analysis on a somewhat weaker hypothesis, (C), formulated
below, which still suffices to develop a fairly precise general theory. The reader will
verify without difficulty that hypothesis (C) is a consequence of (B). We feel that our
hypothesis (C) reflects more directly the insights gained in Sect. 2 than the some-
what abstract-duality postulate (4.7). [Technically, (B) would, however, simplify the

analysis in Sect. 7.]

Definition 4.1. A domain & T M® is called simple iff S is a space-like cone, or S

is the causal complement of a space-like cone. Let S be a simple domain, and let C;

and C; be space-like cones. We define the algebras

B(S) = A(S'Y, (4.9)

Superselection Structure and Statistics in . . . 361

B(C U GC) = (AC) N AG)). (4.10)
Note that, in general, B(C; U C;) properly contains A(C;)" U A(C, 37,

It is easily verified that assumption (B) implies the following properties of mor-

phisms and intertwiners.

Proposition 4.2, Let pc, and pe, be two equivalent representations of A on Hy

localized in space-like cones C; and C,, respectively, and let I'(C1,C2) be a unitary

operator on Hy intertwining p¢, and pe,. Then

(a) pc,(A(S)) C Lm.mve_ for any simple domain § D Cy;

(b) I(Cy,C2) € B(C1UC) N A(S)", for any simple domain S 2CUC,. O

(C) The following three properties, motivated by the study of three-dimensional

gauge theories, are required henceforth.

(C1) Let p be a representation of A on M, localized in a space-like cone C. Then, for

any simple domain § D C,

P(A(S)) € AS)". (4.11)

(C2) If pc, and pc, are unitarily equivalent representations of A on H, localized in
space-like cones Cy,C,, respectively, and if S is any simple domain containing

C;1 UG, then there is a unitary intertwiner, I'(Cy,Cy ), such that
dﬁnu_nuvhnkbv = hn_ﬁ\C HAQEQMY T_.va

for all A € A, and

I(Cy,Cz) € B(C, U C;) N A[S) (4.13)

Finally, we require the following property.
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(C3) *IfCisa simple domain and if § is a simple domain containing C such that w.

contains some space-like cone then

B(C)n A(8)" = A@)". (4.14)

Remarks. (1) IfC; and Cz are space-like separated space-like cones then there are

two minimal simple domains, §; and 83, containing €, U Cs; see Fig. 6.

i
€

g Vi

e 2
2 e,

Fig. 6

It then follows from (C2) that there are two intertwiners I'; = I'i(C1,C,) €

H7 o zw

AS) aad To= 50,6 ¢ AFD" mud tha

Lipe,(A) = pe, (A)Ty, forall 4 ¢ A, (4.15)
ti=1:2,

(2) Suppose that T'; and Iy are arbitrary unitary operators intertwining pe,
and p¢,. Then

1c,(A)Ty = T3pe,(A)Ts, or
hnpﬁ\: = AH_NH,WV; .Qn_.ﬁh.vﬂuﬂ._mu for all A € A,

Hence I';T'} ¢ pei(A)'. The representation pe, is irreducible iff p¢, (A) = {AI:)e
C}. Then it follows that

r; = &°r,, (4.16)

* This property is of a technical nature and can be omitled if one limits the scope of

the analysis to pe’s which are irreducible.
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for some phase e'®, generally # 1. But if the commutant of pc,(A) is non-trivial, i.e.,
if pc, is reducible, then intertwiners are unique only up to clements in pe(A), and
(4.13) fails for some intertwiners.

The algebras {B(C)} and properties (C1) - (C3), above, define the mathematical
structure on which our analysis is based. In the next section, we shall combine (C1)
and (C2) with ideas of Buchholz and Fredenhagen, in order to define the composition
of representations localized in cones yielding representations of arbitrary "charge”
which describe multi-particle states. We shall then reconstruct field operators, 4,
and analyze their statistics. We find, in Sect. 6, that our framework allows for the

possibility of braid statistics. In Sects. 5 and 6, we shall need (C3), (or else limit our

analysis to irreducible representations pc).
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5. Extended Algebras, the Composition of Sectors,
and the Construction of Field Operators,

Let C, be some space-like cone. We define a partial order, <, on M?® by setting

zsy ff Co+z2C +y.

The family of algebras {A((Ca +2))"} forms an increasing net of subalgebras of

B(H,) with respect to >; (here B(H,) is the algebra of all bounded operators on H,).
We define an enlarged, auxiliary algebra, B% to be the closure in the operator norm
of UA((C. +2))". By definition, B% only depends on {Ca +z : z € M%}, so that
BC+z for all z € M3,

Let pc be a representation of A localized in C. We recall that by the definition of
representations localizable in cones, see Definition 3.1, there exists a representation
pe, equivalent to pe with €, € C, +2. Let ['(C,C1) be a unitary operator intertwining
pc and pe,. By (4.4)

pc(A) = ﬂﬁh_ﬁlb?ﬁhuﬂﬁn_huv‘_ for all A € A.
For A € A((Cy + 2)'), pc,(A) = A, hence

pe(4) =T(C,C1)A T(C,Cy)". (5.1)

Hence p¢ is weakly continuous on A((Ca+z)') and we may extend pc to A((C, +2))”
by setting
_ﬁmnﬁ‘mu = ﬂﬁﬁuﬁuvmﬂﬁn.ﬂuvuu ﬁmmv

for all B € A((C, + z)")". This construction can be carried out for all z € M?® and

defines an exteusion .om.. of p¢ to the algebra BS defined above.

Proposition 5.1.

(1) Let pe be a representation of A on M, localized in C. Then there exists a unique

*endomorphism, _em» from B into B(H,) which is weakly continuous on the al-

gebras A((C, + )", for arbitrary z € M?, and which coincides with pc on A
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(2) If Ca+ =z C C', for some =z, then p* i gebra B%, (ie.,

um. (B) C B) and an isometr

leg*(B)Il = ||Bl, for all B € BC.

Proof. Part (1) follows from (5.1), as shown above. In order to prove (2), note

that by assumption (C1), (4.11),

pe(A(Ca +y)') CA((C. + )",

whenever y is such that (C, + y)' D C. Hence, using (5.2),

P (AC+9))") € AC +9))" (5.3)

By hypothesis, C is such that (C, + z)’ 2 C, for some z. But then the algebras

A((Cq + S.Vs_ with y such that (C, + y)' 2 C, generate B, and hence (5.3)
implies that hmimn.v C Bf. That pS* is an isometry follows from equ. (5.2).
|

Definition 5.2. The set of representations, pc, of A on Hy belonging to Ly, and

obeying (C1) and (C2), ((4.11)-(4.13)), which are localized in a given space-like cone
Cis denoted by L¢. Choose an auxiliary cone C; C C'. For p1 and py in L¢, we define

their product by setting
P10 p2(A) = pi*(p2(A)), for all 4 € A. (5.4)

Note that, since A C B% and by Proposition 5.1 (2) p2(A) C B, hence
PS5 (p2(A)) is well defined, for all A € A. We have the following result.

Theorem 5.3, [8]

(1) If py and p; belong to L then py 0 p; € Le.

(2) pro P21 does not depend on the choice of the auxiliary cone C, C C'.

A .
(3) Hmm.. is equivalent top;,7 = 1,2, and wrhu belong to hm. for some space-like cone

A .
C, then p; 0 p; and mu o _wu are equivalent.
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Proof. Using (C1) and (C2), Sect. 4, and Proposition 5.1, one observes that the

proof of Theorem 4.2 in [8] applies in the present situation without change.

As a corollary we note that, for p; € Lc,, with ¢; C Cy, for some auxiliary

space-like cone Cy,1 = 1,-+- ,n, the representation

C (o4
PP o-r0ppty 0 py

is equivalent to some representation p¢ € L.

Proposition 5.4. Let C; and C, be space-like separated space-like cones (Le., C;

such that Cj N Cj contains an auxiliary cone C,. Let p; € L¢,;, i =1,2 . Then

a Ca Ca -
°ps® = p,; obm n B,

c
1

Proof. Thanks to property (C2), Sect. 4, the proof is identical to the proof of
Proposition 4.3 in [8].

Note that it follows from Propesition 5.4 that, for p; and py in L¢, _am_. o py and
.a.m; 0 p1 are unitary equivalent.

Let us rephrase our findings in more conventional Hilbert space language. Let
wi(A) =< N A0 >, Ac A (5.5)

denote the vacuum state; (2 is the vacuum in My, i.e. the unique (up to a phase)
unit vector in My invariant under Uy(A,z), for all (A,z) € P1l). Given an arbitrary

p € L¢, we define the state

wo 0 p(A) = wo(p(4)) (5.6)

on A. With an arbitrary state  on A, (i.e., a positive, linear functional on A
normalized such that o() = 1) we can associate a representation m, of Aona

Hilbert space H,, containing a cyclic vector £, such that

P(A) =< Lo my(A)Ep > . (5.7)
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This is the so-called Gel’fand-Naimark-Segal construction {analogous to the Wight-
man reconstruction theorem).
The total lilbert space Hype. of the theory can now be defined as

i, = H 5.8
tot. E%ﬁh-e _u_n_ (5.8)

where [p] denoles the unitary equivalence class represented by p and Hj, = Huyep.

It carries a representation my,, of A given by

TMiot. = T p]s ﬁ._w@v

®
[plipE L,

with () = Tugep. If pis the identily morphism H[, = 7y, and m, = mp. Hence
H,o contains the vacuuin sector Hy, and my,, contains the vacuum representation,
7o, as a subrepresentation.

It is conceivable that £, contains representations which are not Poincaré-
covariant in the sense of equation (3.11), or which are not posilive-cnergy represen-
tations, in the sense of Definition 3.1. Later on, we shall specialize to positive-energy
representations, but at the present stage of our analysis this is not a relevant concept.

Our purpose is now Lo construct field operators 3, , localized in space-like cones

C C M?, which map a sector H a, w € Lnpg, to the sector H » . Our construction

[e] [popc]
proceeds as follows: Given some morphism p € Ly, we construct an isometry, T},
from M, to M|, by setting

HQD = & ﬁm.HS

where £, is the cyclic vector associated with wg o p by the Gel’fand-Naimark-Segal

construction;

T, (AR = m(A)ey, (5.11)

for all A € A. Suppose that p € Lc. Then p(A) = A, for all A € A(C'); see (4.3).
But by the Rech-Schlieder theorem [34], @ is cyclic for A(C'), if C' is a non-empty,
open set. Ilence the subspace {p(A)Q: A € A} is dense in Hy if p is localized in a

space-like cone C. Therefore equ. (5.11) defines T, on a dense subspace of H,. Next,
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we obscrve that, by (5.11),

< m..tbﬁk.:b._ m;_nbﬁ.wvb Vi_n_ =< jlﬁbvmsq«—iﬁmumn V\x_l

<o (AT B)E, >y,

wy 0 p(A*B)

It

<, p(A*B)R >qq,

< p(A)R, p(B)2 >y, .

Thus T, preserves the scalar product and, since it is densely defined, T, extends to
an isometry from Mo into M[,. But by the G.N.S. construction, {7 (A)é, : A € A}
is dense in Hip)s so the range of T, is ‘Hiy). Hence T, is invertible, and HJ.“_L is an
isometry from Hip to Ho.

The operator T, intertwines the representations (7(p)> Hip)) and (p, Ho) of A, ice.,
m(A) T, = T, p(4). (5.13)

For,

o) (A) Tp p(B) Q2
= ,jn_ﬁb.mv?
= T, p(A-B)Q = T,p(A)p(B)

(g} (4) Tp) (B)¢,
7 (A-B)T, 0

I

It is casy to extend the definition of T, to an arbitrary sector H a :w € Ln,, mapping

[r]
it to H A i
it to (o]’ by setting
z = ; .
“la, pep Py (519
(7 W
Then one casily verifies that
A \p U._‘. = _-...1 A .
ﬁ._.vo.&ﬁ v P X A P ..:.T& ﬁhﬁﬁvv H., AWHMV
[e) [r]

We may now define field operators 4,(B), B € B, by setting

Yo(B)® = T, nr(B)®, (5.16)
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where @ is an arbitrary vector in .I_J.
P

These field operators are bounded versions of the more familiar unbounded field

operators of Wightman field theory. They cannot, therefore, be sirictly local. Their

localization properties are described in the following proposition.

Proposition 5.5. Let p € £¢ and let B € A(C), where C is some space-like cone.

Then ¢ ,(B) commutes with all observables in.A°(C), (the subalgebra of A commuting

(Ao(B) = mp (AT, 7, (5)

= T, my (o(4) B). (5.17)

A
(o]

Since A € A°(C), p(A) = A, as was shown in (4.3). Morcover, A commutes with B,
since B € A(C). Hence

Il

T a(4) $o(B)

(Bos] L 5 B i )

lr]

= ¥o(B) mp(4). W
Remark. Since we shall always work with the total Hilbert space My, defined in
(5.8), and since by Proposition 5.1, (2) |[m,(A)|| = ||All, for all A € A, where p is
an arbitrary morphism in L¢, and C is an arbitrary space-like cone, we shall, from
now on, write 4, instead of m,)(A). Which representation of A, or of B¢, Ais to be
evaluated in will be clear from context.

We now study further properties of the algebra of ficld operators. From equs.

(5.16) and (5.17) it follows that
Ay(B) = ¥,(p(4)- B), (5.18)
and from (5.16) and (5.15)

ﬁt—ﬁmhv.ﬁtu ﬁmuu = e_;buom: A.QM\_ m.mw;,mwv. ﬁm”_.@v



370 J. Frohlich, F. Gabbiani & P. A. Marchetti

Cq X (C1 UC3); (€1 and C; are the cones where p1 and p; are localized).
There is some redundance in our notion of field operators. Let p; € L¢, and
P2 € Le, be equivalent morphisms of 5%, where the auxiliary cone is space-like to

C1 UC;. Then there is a unitary intertwiner I'12 = T(Cy,C;) such that

Ti2p2(4) = py(A)Tyy, (5.20)

and, by property (C2), I';; can be chosen to belong to B(C, UC;) N A(S)”, where S
is a simple domain containing C; and C5. We choose C, such that § C C). It is easy

to check that for ¢ € .I_v_.m € Lnx,, and B € B, the vectors

$p,(T12B)® and ,,(B) (5.21)

define the same state on B¢, For, for A € BSs

< Pp, (I'128)®,44,,(T'12B)® >

< $ou(T12B)8, 5, (o5 (A)T12B)% >, by (5.18)

< $p(T12B)®, ¥,,(T12p5*(A)B)® >, by (5.20)
< T'13B®, T12p5°(A)BS >, by (5.14), (5.16)

Il

< B®, pS*(A)B® >, because I'y2 is unitary
< $0,(B)®, $(p5*(A)B)® >
< ¥, (B)®, hﬁhuﬁmu@ >, by Am.”_.mv

i

Il

Of course, it does not follow from (5.21) that 4, (I';2B)® and Y, (B)® are the same
vectors in i_mon_i much less that 4, (I'128) and ,,(B) are the same operators.
This observation will lead to a notion of field bundle which will display interesting
topological properties; (see Sect. 6).

It is easy to extend the arguments in the proof of Proposition 5.5 to show that if

I'12B € A(C,)” then ¥,,(I'128) and ¥,,(B) commute with all operators in .A%(C,).
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5.6. A ficld 1,(B) is said to be localized in a space-like cone € C C iff

" — . A AL . .
there is a unitary operator I' € B intertwining p with p such that p is localized in

€ and B € A(C)”. The familiy of fields localized in C is denoted by FS+(C).
|
By the previous remark, any field in F% (C) commutes with all operators in
A(C).
This definition is independent of the auxiliary cone C,, in the following sense.

A A
Lemma 5.7. Let ¢,(B) € F(C) be a ficld localized in C and p € Lc. If S is the

A A
minimal simple domain containing C and € such that & X C, and if C, is any other

A A

auxiliary cone salislying C, X S then %,(B) € F¢(C), or

FO(C) = F(C).

A
Proof. Since y,(B) is localized in C C CL, there exists a unitary intertwiner I' € B

such that
Tp(A) = p(A)L. (5.22)

As the algebras A((C, + z)') are norm dense in B il is no loss of generality to

_ue
assume that T' € A((C, + z)')  for some z € M? and, since B** = B% | we may set

z =0,
i . ; 5 = A
Property (C2) implies the existence of an intertwiner I' belween p and p con-

A w
tained in B(CUC) N .A(S) , so that

I Ip(4) = p(A)TT* (5.23)

- Ay
holds, by (5.22). Equations (4.3) and (4.9) imply that ' T* € B(C) n A(C;) and

w

o A
hence I' I'* € A(C) , by (C3). We conclude that

w

I'B

(FI*) (T B) € A(C)

and

A

B = I"(I'B) ¢ A(S)" ¢ B® (5.25)



3972 J. Frohlich, F. Gabbiani & P, A. Marchetti

so that ¥,(B) € .ﬂmuﬁmu

It remains to check that the action of the field Po(B) on H 4 is independent of

the choice of the auxiliary cone Cq, for all m € L¢. That is, v
vy, (6% (B)B P):
5, 5 (D)D) =y (51D (5.26)

A
should hold for any C,,C, X S (sce (5.19)). This is equivalent to

A

>n= Al
pi(B) = 5°(B), ¥ p € Le, CayCo X S. (5.27)

w

But B € A(S)" C B® n B and hence (5.27) follows at once.

|
Remark: If p is irreducible, then equ. (5.23) implies that T I'* ¢ p(A) so that

['= AL A |=1 holds in B, The rest of the proof goes through without change,

and we conclude that property (C3) may be omitted if we restrict ourselves to direct

sums of irreducible representations.
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6. The Field Bundle, and the Statistics of Fields.

In our analysis, the topology of the space, 3 ;, of space-like cones in three-
dimensional Minkowski space plays a fairly important role; so we start by describing
it. This will make us understand the basic differences between local, relativistic quan-
tum theory in space-times of dimension three and those in four- or higher dimensional
space-times,

Although the space 3, of all space-like cones in M? is infinite-dimensional, its
non-trivial topology resides in a simple finite-dimensional subspace: Let C be an
open convex cone in the time ¢ = 0 plane of M?, whose boundary, 8C, consisls of two
rays emanating from a point = € R?, the apex of C. Let ¢ be the angle between the
two rays in 8C, and let 7 be the ray emanating from z and bisecting C into two
equal pieces. Let a be the angle between r¢ and the zl-axis. Clearly, € is completely
described by its apex , its opening angle ¢, and the angle a. Let C = (C')" be the
causal completion of C. Then C is a space-like cone in M* with apex at z. It is
completely determined by C and hence by the triple (z,¢,a) € R? x (0,7) x S'.
Henceforth this will be the notion of space-like cone that we shall use.

Now the fundamental group of the space 3, of space-like cones in M? is the

same as the fundamental group of R x (0,7) x S. But
(R x (0,7) x .m;v = m(s§') = L (6.1)

Let us call o the asymptotic direction of C, {or of the base, C, of C). Then

(6.1) says that, from the point of view of the fundamental group, 3, is adequately
described by the space of asymptotic directions which is the circle S§'. In higher
dimensions, it is still true that the fundamental group of Y .41 (the space of space-
like cones in M**1) is described by the space of asymptotic directions, = 5*1 but
m(S*71) is trivial for s 2 3.

It is the non-trivial topology of 3", which makes the problem of field statistics
in three space-time dimensions more difficult than the statistics problem in higher

dimensions and allows for the occurrence of braid statistics. Loosely speaking, braid
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statistics occurs when paths of field operators of the type constructed in Sect. 5
corresponding to loops (= closed paths), 7, in 23 do not close which can happen
when 7 is not contractible. Non-contractible loops, v, exist in 2 s: because m(3,) =
#1(S') = Z, but there are no such loops in 37, ), for s > 3, and this explains
why statistics in local, relativistic quantum theories is conventional in space-times of
dimension at least four.

Our purpose is now to make these remarks precise. We pick an auxiliary cone,
Ca, with asymptotic direction a, € (0,27) and an opening angle e. We also choose a
reference cone, Cy, with asymptotic direction ay and an opening angle so small that
Co and C, are space-like separated, i.c., Cy Co. Let m € L., be a representation
of A localizable in cones relative to the vacuum representation my, and let p € L¢,
be a representation of A on Hy equivalent to 7 and localized in Co.

Let €; and C; be space-like cones such that C; X Ca, and (C; UC,) X Cs. Let
P1 € Le, and py € L¢, be representations unitary equivalent to p. By property (C2)

of Sect. 4, see (4.12) and (4.13), there are unitary operators I'; and ['; such that

Tipi(A); = p(A), forall 4 € A, (6.2)
and
Lie B(GuC)n A(S)", (6.3)

where S; is a simple domain, (see (C1), Sect. 4), containing Cy U C; with S; Cay
for 1 = 1,2. [The algebras B(C) have been defined in (4.9)).
Let B; € A(C)",i =1,2. We set

ﬁﬁﬂim; = ﬁbﬁﬂ.w‘mw.v = mg_nw..n&m.... HQNC

toH ~ ,forany m € Ly, constructed

(7] (pos)’
in (5.10)-(5.14). The second equation in (6.4) is definition (5.16) of Po(-).

where T}, is the isometry on My, mapping H

It is casy to see that ¥(Ci, B;) belongs to the local field algebra F°(C;) intro-

duced in Definition 5.6. Let ¢ be a vector in H ., for some m € Lx,. Then, by

(el
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(5.10) or (5.15),

Y(C1, B1)¥(C2, B2)® = T,[1BiT,I;B:%

T2p% (I')p% (BT} By

= Tpopp®™ (T})T} p5°(B1) B2, (6.5)
and we have used that T2 = T,,,. Since B; € A(C))” and C; ¥ Ca,
pS(B))B; = BiB; = ByB;, = p{*(B:)B,. (6.6)
Hence
$(C1, B1)(Cz, B2)® = Tpopp® (I} BaBy . (6.7)
Similarly, using again (6.6),
P(Cay B2)$(C1, B1)E = Tpopp™ (U3)5 Balh 2. (6.8)
We define a statistics operator
mmuﬁbfhuv = (TS p(T2) € Bee, (6.9)
Then
M._.nc_umwaﬁh:.ﬁuv bnsﬁﬂmvﬂmmubue
= Tyop p° (T3 B, B, & (6.10)

On the spaces H ﬂm € L., we may define the operator ("statistics matrix”)

[popep]
MNM:TDH._BMV — N._bon NM.«A.QH:QNW MJhluwu AQHHH
By comparing (6.7) with (6.8) and using (6.10) and (6.11), we conclude that
$(C1, B1) 9(Ca, B2)
= :Maﬁﬁrbmv %ﬁﬁmvmwu .@ﬁﬁ:m_v@v AQHMV
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Thus the operators mm..??.auv and mm.ﬁbf_ouv describe the commutation relations
of space-like separated field operators. They have some fundamental propertics de-

scribed in the following theorem.

Theorem 6.1,

A
(1) Suppose that C, is another auxiliary cone with th
1 =1,2. Then

&;, for

mM=Ab:_QNu = nm.. Tou._an.

A
(2) Suppose thalC;,1 = 1,2, are space-like cones with the property that the domains

A A
C;UC; are contained in simple domains §;, that
i

A A
Si Xy, fori=1,2, and S; X Ss. (6.13)

Let m.. € hm be unitary equivalent to p, for : = 1,2. Then

A A
n.noa?r.ei = mm..ﬁnrhuv. (6.14)

(3) The operator m.m._Abr.amu commutes with pC+{pCe(BC)).

A
Proof. Inordertoprove (1), we note that since C, S; and C, S, forii= 1,25

it follows that I't € A(S;)" € B%n mm,_P € A(S;)” € BSn Bbe, Henee
A A
pS(T7) = pt=(T]), and p%(T3) = o (Ta). (6.15)
Thus (1) follows {rom (6.9) and (6.15).
The proofs of (2) and (3) are almost identical to the proofs of parts a) and «¢)
of Lemma 2.6 in [7]. Since these are basic facts, where properties (C1)-(C3) must be
used, we repeat the arguments.

A
Let I'; be unitary operators intertwining p and w.. € hm ,i=1,2. Then

A
I; = AT, (6.16)
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where A; intertwines p; and m.._ for i = 1,2. Let &; be simple domains containing Cy

A =
and C;, with S; Cq, for i = 1,2. It follows from property (C2), Sect. 4, that

[

A T
I'; e .LA%.V , and I'; € .\»ﬁ%—v y = 1,20

Hence

A R e T A
A =T e A(SiusS;) , 1=1,2. (6.17)

M o A
Since A; € B(C; UC;), by (4.13), and since (S; U S;) C, and S; Ca, it follows
from (6.17) and property (C3), Sect, 4, that
|> w
A€ A(S;) . (6.18)
A A
where S; is a simple domain containing C; U C;.

Remark. If pisirreducible thenif A; and A; are two unitary operators intertwining

pi and m.. contained in an algebra Lﬁ.wue_ where S is a simple domain containing C;

A
and C; and such that & C, then

Ay = m..a V.._

for some phase ¢'?, sce (4.16), and, since A(S)" € B, it then follows from (C2)

that
w

A
An Dy € A(S))

for any simple domain r.w,.v. containing C; U mr i = 1,2. Thus if p is irreducible we
do not need (C3) to prove (6.18). Since, physically, only irrcducible representations®
are really important in this analysis, we learn that property (C3) could be omitted,
provided one restricts all representations to be completely reducible!

We now conclude from (6.18) and locality that

AjAy = AgAg, p5H(8y) = Bg, and p*(82) = Ao

SThey are ezpected to describe states of fized “charge”, in particular onc-particle

stales.
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A A - * A
eS*(p1,p2) 7)p% (A])D5 858, 0% (A;)p (T2)

[)T3p3° (A1) A3 8107 (47)T1p% (I'2)

un.ﬁ
bn..ﬁ
unn.QUERRP?P%.?L
P (T])T5T1p% (T)

et

_B._...cuv

which proves (2).
Part (3) follows directly from the observation that y(Cy, T)%(Cy, 1) and $(Cy, 1)-

1#(Cy, 1)@ define the same state on A, by Proposition 5.4. Hence mm._ﬁ.af.ouv must

commute with p$*(pS*(B%)) and hence with pCs(pCa(BCs ).
|

Next, we should ask how mm,.bo:buv depends on the choice of the reference
morphism p. Suppose that p is replaced by an equivalent morphism 5 localized in a
cone m. with € X Ca. Let p; and p; be as above, and let [ bea unitary operator
intertwining p and 3, i.e.

p(A) = T p(A), A€ A, (6.19)
with I' € B%%. Then
e (pr,p2) = (p°(D)T)" €ge(pay p2)p (D)L, (6.20)

as follows easily from (6.19) and (6.9), using that 5% (A) = [*T'!pS (AT, for
Ae A
Let us fix the auxiliary cone C,. Without loss of generality, we may suppose that

the asymptotic direction, a,, of C, is
Dy = (6.21)

Given some morphism p € L¢ we define the asymptotic direction, as (p), of p to be

the asymptotic direction of the space-like cone C in which p is localized. Let € be the
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opening angle of C,. In accordance with (6.21) we require that

-t w < as(p)<m-=. a.wwv

Consider a representation m € Ly,, and pick a morphism p localized in a space-

like cone Cy, with Cy X C, such that 7 is equivalent to p. Let p; and p; be equivalent
to p and localized in space-like cones C; and Cy, respectively, with C; X Coyit=1,2,

and C; X Cy, as assumed in Theorem 6.1.
Definition 6.2. We define

mm.:v = m.no,_ T::Su if Q.APV > auﬁhuy ?.va

and
eg = el (p1yp2) i as(py) > as(py). (g2

This definition is illustrated in the following Fig. 7, (b).

Fig. 7
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Suppose that as(p;) > as(pz). Let m.. be equivalent to p;, and such that the
hypotheses of part (2) of Theorem 6.1 are satisfied. Then Fig. 2, (a) shows that
ahﬁmwv > mmﬂmuv, and Theorem 6.1, (2) tells us that

Fal A
s (prp2) = €5 (b1, p2)-

Moreover, within the limits specified in part (2) of Theorem 6.1 and indicated in Iig.
2, (a)

mm._ (P1,p2) = mm;?: 1P2)-

Using now part (2) of Theorem 6.1 to move p; to w:.& to mf with ?Aml >
N .
as(p2), and then again part (1), and so on, we see that, as long as C, &y, £~

is well defined and independent of C,. Thus, we may write

e = e, (6.25)

- Car —ep
and similarly m._w =€,
N
For Cp,C1,Cy1,C3,C, as in Fig. 2, (b), a simple domain containing C; UC,; cannot
be space-like separated from C; and from C,, so that part (2) of Theorem 6.1 does

not apply. In general,
A
€S (p1,p2) = €7 # €5 = €5 (p1,p2)-

We define

= Bt or =3, at «. (6.26)

We summarize our discussion in a theorem.

Theorem G.3.

Let p € [p] € Lx,. Then p determines two unitary operators, mw € B and mM =

BS, where C, is any auxiliary cone in the space-like complement of Cy, the localiza-

tion cone of p, such that

mw and mnA arc independent of C;

Gv
(2) mw and mM commute with p (p(.A4));

Superselection Structure and Statistics in . . . 381

(3) e2-el = 1. (6.27)

(4) U p is cquivalent to g then

&)
ey

Il
=3
-

o
v
=

o
A

il
xa.
*

™
N
<

for some unitary operator U € B¢ only depending on p and 5; and
p and p

(5) if $(Ci, Bi) = 9,(C:, Bi), © = 1,2, are the field operators defined in (6.4) then

$(Car Br) $(Cay B2) = RS $(Cay B2) $(C1, Br), (6.28)

> . 5y b ;
for as(Cy) < as(Cy), where as(C) is the asymptotic direction of the space-like cone

C relative to the auxiliary cone C,.

Proof. (1) follows from parts (1) and (2) of Theorem 6.1 and the remarks above;
see (6.25). In view of Definition 6.2, (2) is identical to part (3) of Theorem 6.1.
Part (3) is a simple calculation, using (6.9) and (6.23),(6.24): if as(p1) > es(p2)

then

Il

mm»?_:&v nm.,?fnL

P+ (I3 T p (7)o (T5)T{ 265 (I)

= 1.

Part (4) is (6.20), (with U = pS*(T)T € BS), and (5) follows from (6.12) and
>
the definition of RS ; see (6.26).
| |

Next, we wish to relate €7 to e5. Consider the geometrical situation depicted

in Fig. 8:
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Then we have

By (6.9),

‘g, 8

e (prap2) = mM, and

¢
]
mw.? ) = €]

Slene) = €5 (6.29)

5 (p1,p2) = pC(T})D3T p%(Ts)
5 wR K2
€S (p1yp2) = pC(T3)TTy p5(T), (6.30)

i A
' ¢ -
where I'; € A(S;) C 8% N B S, is a simple domain containing Co U Cy space-like

A
to C; and C,,I"; €

ST W

.\»h,m.uv C mwnl_v but H.,:ﬂ Gna_ and MHH c .\»T.W,Hv C Qm;_ but

N
2 €Ca 4 53 i
Iy ¢ B, [By (C3), S is the minimal simple domain containing Co U C; and space-

) oA . A A
like to Cq, while Sy is space-like to C,.] Of course, I'y and Ty may, in general, be

dilferent unitary operators.

A

Since p€+ (') = p©+(Iy), it follows from (6.29), (6.30) and (6.2) that

Il

® A

L * o Cq -
I Q‘Lﬁu_om (T2)0
e N

Ca T Ci V>§4
P (T7)p™ () Ty (6.31)
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A
It is easy to see that, as operators defined on Ho, [T, commutes with p(.4) and
A

pS*(I'})pS(T'y) cominutes with p(p(A)) (= p°*(p(A)))- If p is irreducible then
p(A) = {MI: X € C}, and it follows that

rr, = e?™ % on Hy, (6.32)

where s, is some real number. We shall see in Sect. 8 that s, is the spin mod 7 of

the states in H[,).

The key observation is now that, since there is no auxiliary cone space-like to
AA 2 -
S, and to Sp, TiT; is not an element of any BS, for any auxiliary cone Cq, and
A A - N
hence un.ﬁﬂmu.@nnﬁ?v will, in general, not be given by pCe(I'iT1); in particular, it

need not be given by e?7**». Thus we conclude that, in general, €5 and e may be

raid statislics in three-dimensional

distinct unitary operators. This is the origin o
local relativistic quantum theories, and our arguments have illustrated its simple

topological origin. This will be elaborated upon in Sect. 8.
Next, we derive commutation relations between two fields
$,(I"By) = T,I"By and $5(0"By) = T;I" By, (6.33)
where I" and T are unitary intertwiners such that

pi(A) = Tp(AI", pa(4) = s AT, (6.34)

for A € A; p; is localized in a space-like cone C;,and B; € \bhn_.vev for : = 1,2: more-
over, Cy C;. [See (5.16) and (6.4).] It is no longer assumed that the morphisms
p and j are unitary equivalent! In this case we shall encounter some ambiguity, as
one would expect from local quantum field theory.

It is convenient to choose the reference morphisms p and p to be localized in
space-like separated space-like cones C and C, respectively, sucht that CU ¢ Cai

for some auxiliary cone C,. By proposition 5.4,

pbrople = i 0opf, on BE-. (6.35)
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Thanks to (6.35

i.e.,

ToTs = Tl (6.36)
However, since T}, is not uniquely fixed by p, other choices for T, and T arc conceiv-

able for which [T, T;] # 0. This ambiguity has been analyzed in local quantum field

theory by Araki [35]. For concreteness we shall impose (6.36) and suppose that

Qbﬁbw > Dhmmu« Amwﬂw
relative to C,.

We define a statistics operator

coa(prrp2) = pO(D7)'T o%(T). (6.38)

By (6.34), mmn.m?:huv is equal to

mm”.ﬁb_,buv H.:bm..aﬂdﬁm..ﬁwvﬁ. (6.39)

The statistics matrix, 2, is defined by

bm“._w??buv = T;T, mm...w?_.EXHmHLL (6.40)
Repcating calculations (6.5) - (6.12), we find that

¥o(L" By Jy5(I* By)
= RS(p1,p2) $5(1" Bs) 9,(T By) (6.41)

on Hyoq.. This is the analogue of (6.12).
Using properties (Cl) - (C3), Sect. 4, and equs. (6.38), (6.39), it is straight-
forward to extend Theorems 6.1 and 6.3 to the present situation; (this is a uselul

>
exercise for the reader). Thus, for as(p;) < as(p;), relative to some auxiliary cone

C, space-like separated from C,C,C, and Cy, we define

™
.
I

5o = coslpi,pa), (6.42)

) one can construct the isometries T, and T; on Hypy. to commute,
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and )
Z —
RSy = T3T, e54(TsT,) . (6.43)

PP

Then one has the following theorem.

Theorem 6.4.

> <. ared nt of C,.
(1) e;;and e;; are independe s

(2) €5

WP

5 5 a(RBCa
commute with pC (5% (8%)) = 5% (p(B)).

(3) e25¢€5, = L.

: = H]
for some unitary operator U € B® only depending on p,p,p and p'.

> - g
(8) p(T* B )ws(D*B2) = RS s95(1* B2)¥p(T* Br), for as(Cy) < as(Cy).

A A
(6) With the obvious meaning of I',T',Cq and Ca,

N

A
¢S, = Fo(D*)F%(T)ed T

[T

O

Remark. Since we have assumed that C C, with as(p) = as(C) > as(C) =

as(p), see (6.37), we may set p1 = p,C1 = Cand p=p,C, =C,s0that I =T =1L
It then follows from (6.42) and (6.38) that

o 6.44)
€pp = 1, A
hence, by part (3) of Theorem 6.4,
<
€pp = I.
However, ¢5; = (€3, -1 will, in general be different from 1. If we replaced
LR 12 By

(6.37) by the condition that as(p) < as(p), then (6.44) is replaced by

es, = W, (but mw_m # 1. (6.45)
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Replacing (6.36) by
T,T; = TT,c¢,
for some unitary operator e € B commuting with pC (p(A)), we can achieve that
€75 # Tandel; # 1.

>
: % . .
Thus the statistics operators €, 5 depend on various conventions. Objects which

are invariantly associated with [p] and [5], up to conjugation by unitary operators in

o
B, are the monodromy operators,

>
<
o 21 (6.46)

. >
” i
in contrast to the "half-monodromies”, mM_m.
i
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7. Representations of the Braid Groups, Statistical
Dimension and (Charge-) Conjugate Sectors.

In this section, we show that the statistics operators ¢7, &5 determine unitary

representations of the braid groups, By, on n strands, n = 2,3,4,.... These rep-
resentations will turn out to describe the statistics of multi-particle wave functions,
(describing the state of asymptotic charged particles); see Sect. 9.

To begin with, let us recall the definition of the braid groups: The braid group,

B, on n strands can be defined by its generators 7y,..., Tn-1, satisfying the relations
Ty Titl Ti = Titt Ti Titly Q.:

fori=1,...,n—2,and
Tty = TjT, for |i—-j|2 2. (7.2)

The inverse of 7; is denoted by 77}, for all 4, and the identity clement of B, is denoted
by 1. The center of B, is generated by (11 72 ... y Tn—1)"

Given n vertical strands in R?,

i 2 3 n
Fig. 9

clement 7; acts on these strands by braiding the ith strand once:

H

Fig. 10 H.muﬂ
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General diagrams with many braided strands are called braids; for precise definitions
see e.g. [36]. Multiplication in B, can be described as the composition of braid
diagrams and rearranging the strands by ambient isotopies of R® with the property
that distinct strands never intersect. These rearrangements of strands precisely cor-
respond to rearranging words in {r{t!,... 7£L} by using the relations (7.1) and
(7.2).

The groupoid on n coloured strands, By, is obtained from B, by assigning
different colours to all strands and requiring that two n-coloured brajd diagrams be
composable only if the colours of the strands match. Clearly, B, acts on D¢ in the

obvious way.

Lick pyysvsypn be n (possibly inequivalent) morphisms of the algebra B¢ local-

ized in space-like cones Cy,...C,, with the property that C; X C,;, for i # j, and

o
Ci X Cq, for some auxiliary space-like couc Cayt =1,...,n. Lel I'; be unitary inter-

twiners such that
pi(A)=Tipi(A)T, A€ A, i=1,...,n, (7.3)

and such that p; is localized in C;, with C; Bl T0 Py e PR

Cjyfor i # 7, and C;

o o o o
are all equivalent to some p € [p] € Ly, then we sct m_ == pgp=p,(C ==

Co=C,with € X C;). We set

Pi(C) = mw.. Iy B, (7.4)
with B; € Hﬁge. Since C; X Cj, p%(B;) commutes with p5(B;), for i # j and
arbitrary morphisms, p% and 5%, obtained by composing some of the morphisms
bmau.. .p%; (here we are using (4.17) and (4.3)). The statistics (commutation rela-
tions) of the fields ;(C;) is therefore independent of the operators B, and hence we
may choose, for simplicity, B; = 1I, for all 1.

We now consider the product ¥;(C;)...%,(C,) and study the effect of inter-
changing ¥,(C;) with ¥:4,(C;,). By (7.4), for B; = 1, and (6.36), i.e., MW., and 7.

Pit1
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commute, we obtain, as in (6.10), that

o°C.
T, Ts mww, Pi ( .1+LH;H
Pigl P pipigr

R¥ . $ip1(Cigr) %:(Ci), (7.5)

Pi Pit1

Pi(Ci)is1(Ciya)

Il

z < i i . B t (2) of
where # = Mu for as (C;) < as (Ci41), and uww\.., " is defined in (6.43). By part (2)

>
< ith pSs, (pS= (B> < ith
Theorem 6.4, €S, commutes with bm.ﬂw?m (B%+)). Hence mw_, " commutes with
Pi Pit1
all operators
i1 (pi (p%(T)), for j <,

. ! ¢
where p© is any morphism obtained by composing some of the morphisms p;*, ..., ;%
From this it follows immediately that

$1(C1)- .- PilCi) i (Cita) - ¥n(Ca)
> o
= :..Aﬁ_mh TR .b.L e_: ﬁnyu i ,%Aﬁl‘uv ﬁ_\.ﬁﬁ& tac %‘-ﬁﬂzv. ﬁﬂ.mv
>
if as (C;) < as (Ciy1), where
<3 0 e 7.7)
= . woa BT BTN (
RE(p1r--espm) \_HM: ...u._n.,t i B 1
i & &1 &

Let b be an clement of B,, presented as a word in the gencrators ol £
b=rk... .7}, for some k€N, (7.8)

: j = . IF < k, we set
where ¢; = £ 1, i; € {1,...,n =1}, for all j = 1,...,k. Forl <m <k,

i ints of tl
b em 21 and we define m,, to be the permutation of the endpoints of the n

=TT
coloured strands corresponding to the element by, € B, with 79 = id. We define

g ° £
~mAﬂ.ﬁyu.=.v = mmﬂbacv....f\uﬂﬁsuv. A.N,:

. . A .
Let w be an arbitrary localized morphism, i.e., [p] € Lx,, and sct

H = Ha (7.10)

o o
[popn..op]



390 J. Frohlich, F. Gabbiani & P. A. Marchetti

For b given by (7.8), we set

1
Blbiprisatn) = || RsEodn—) (7.11)
m=k
Proposition 7.1.
The assignment
Bu3b— R(b;p1,...,0n) (7.12)

defines a unitary representation of the groupoid, BE, of n-coloured strands on the Hilbert-

space H.

Proof. Clearly the opertors bwﬁmic_ R, M:?vv and hence the operators fi(l; Plyenes
_mav are unitary operators on H, for all b € B,,. We must show that I respects rela-
tions (7.1) and (7.2): let o denote transposition of § with j 4 1. Then (7.1) would
imply that

R(mi, 0041 00;0m) R(7ity,000m) R(m,m),

= R(7it1, 050041 07) R(7,0041 o) R(7i41,7), (7.13)

fori=1,...,n—2, and every permutation = of {1,...,n}. Equ. (7.13) follows imme-
diately from (7.6), (7.7) and the associativity of multiplication of the field operators
¥i(Ci)yi = 1,...,m, by exactly the same arguments as those explained in [32].

Next, (7.2) would imply that

R(ri,e50m) (7j,7} = R(rj,e;0m) N7, ), (7.14)

if |1—j |> 2, for every permutation 7. But this is obvious from (7.6) and (7.7).
u

Remark. The representation R of B on H defined in (7.12) is cquivalent to a

unitary represeniation r of BE on the vacuum sector Hy deflined by

= — m-1 -1 &1 T T,
r(ri ) = Hmanav...ﬂwi_u:?, vihwi:...gbisu
>
= TTr awli? s . T, i
pm(n) pr(i+2) mnic_ci_,iv pr(it2) pm(n)
>

°c, oc,
= Pain) @ "0 Pxliyyy (€ ), (7.15)

<
p (i) pr(i+t2)

R TR O

sEET
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and the last equality in (7.15) follows from (5.15). For b as in (7.8), we set

r(bipyeepn) = [ (i Tmet)

= T7'...T7 R(biprye.-pn) To Ty

Pn P1 P1

(7.16)

and in the second equation we have used that m:m.. and Hm, commute, for all ¢ and j,
i i

by convention (6.36).

Corollary 7.2.
If m: SRR S _m:a = .Q_Tu_ € Ly, then

(7.17)
is independent of 7 and
B,3b — r,(b) = r(bip,-.-,p)

defines a unitary representation of B, on the vacuum sector Ho which commutes

with all operators in ﬁhn,_vo: Amnav.

Proof. The only statement left to prove is that r commuies with ?._n..v Amn..v.. By

>
part (2) of Theorem 6.4, ¢S commutes with pC(pC=(BC)). Hence (7.15),(7.16) show

that r(7F 1) commutes with (p+)°n=" (B+). Since

A_ah..uak Tmnav .M ﬁbnauu: :wn..v,

i

for all k # n, (1) commutes with (pf+)°™ (BCs), foralli < n—1.
|

Next, we investigate an important special situation, the one where p is an au-
. . : : Ca) — BCa
tomorphism of B*. [A *morphism p of B% is an automorphism if p(8%) = B"".

; . T . .
Since p is an isometry on B¢, it follows that p7" exists and is an automorphism of

BC, as well.]
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Theorem 7.3.

The following statements are equivalent:

(1) pC is an automorphism of BC+;
(2) (p%)2(B%) ={A1: X €C}, ie., (p°)? is irreducible;

>
(3) ef = eF27i0(0) 1, for some 6(p) € [0,1).

Proof. The proofis the same as the one of Proposition 2.7 in [7]. For the convenience
of the reader we sketch it here: Clearly (1) implies (2). It has been shown in part

>
(2) of Theorem 6.4 that €5 commutes with p€ (p«(B8%)). Hence (2) implies that

> >
: 2 .
Since e are unitary, | A5 |= 1. By part (3) of Theorem 6.4, ¢; - e5 = 1, hence

> .
AZ-AS =1,0r AT = eF271%e), for some 6(p) € [0,1).

It remains to show that (3) implies (1). We choose p; = p,T'} = 1,0, = 5,2 =

I, where 5% (A) = I' p(A)[*, for all A € B, 5 is localized in a space-like cone C,
and e.g. as (p) > as (p), relative to C*. Then, by (6.9) and part (3),

H.,w pfe (I) = e Mmifa) e

™
AR
I

1

T pCu(F) € pf(B%). (7.18)

L 1]
Il

Now, let A be an operator in B . By construction of 3%, (sce beginning of Sect.

5), given any € > 0, then exists B, € xﬁ&.veﬂ for some simple domain § X C, + z,
for some = € M3, such that ||[A — B,|| < e. We may choose the localization cone €

of p so that Q.X,w and G.th 4y, for some y € M*. Then % (B,) = B, and (7.18)

implies that

B, =e3%(B,) = T p%(B.)I"

= p%(I'B. ™) € p%(B%).

(£}

This shows that B¢ C p% (8% ) and hence that p is an automorphism. |
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Remarks.

(1) Theorem 7.3 shows that, for automorphisms, p, of B¢, the representation 7,

of B, is abelian, with r,(r!) = €T 27i0(p) This is the situation realized in

abelian gauge theories with anyons.
(2) If p is an automorphism then there exists a charge-conjugate automorphism
5 = p~'such that pop = pop = id.. ILis easy to see that 8(p) = 0(p) (mod Z),

i.c. the charge-conjugate field has the same statistics as the original field.

Clearly, the case where p is an automorphism is special. If (p° )3(B%)" is non-

irivial then, a priori, we do not know more than that the representations r, of By
constructed in Corollary 7.2. are unitary. In contrast to the case of sirictly local
quantum theories studied by Doplicher, Haag and Roberts [7,26] which is understood
completely, there is, in our case, only a rather rudimentary beginning of a gencral

theory. We briefly sketch some results taken from [22,23,18] which are relevant in

this context.

Given a morphism p©* of BC  we define a left inverse, ¢, of p* to be a linear

map from B¢ into B(Hg) with the properties:

But, in general, ¢(A - B) # ¢(A) - ¢(B), and ¢(B) & B, ie., ¢ need not be a

morphism. The principal results are as follows.
(a) Every morphism p € [p] € Lx, has at least one left inverse (7.

(b) Suppose there exists a lelt inverse ¢ of p such that
#e2) # 0. (7.19)
Then there is a unique, so-called standard left inverse, ¢, such that

bo(e2) = M Up 12,151,
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where U, is unitary, and 0 # A, € C. Since mW and m.M are unitary, with

>

g 1 *
7 - €5 = 1, it follows that €5 = (¢7)* and hence by property (i) that

£
#(el) = U

If p is irreducible, i.c., pS(B%) = {A1L: X € C}, then U, = 1. For mm
. 2 — b
commutes with p (p (B)), hence ¢(e5) commutes with p® (B ). If p is an

automorphism then, by part (3) of Theorem 7.3,

A = () = p7i(eD) = eI, (7.20)
The number A, is called the statistics parameter of p.
The statistical dimension, d(p), of p is defined as
dp)™? =X P < L (7.21)
If p; and p, are irreducible morphisms with A, # 0# A, then
d(py 0 p2) = d(p1) d(p2).
Hp= .,WH pi, where p; is irreducible, for all ¢, then
dp) = Y dp) 2 m. (7.22)
=1

Under some additional assumptions (Poincaré covariance), see [8,37] and Sect. 8,
: > ; ;

one can show that if ¢(e]) # 0 then there exists a charge-conjugate morphism,

7, localized in some cone € X C, such that p% o 5% and % o p® contain the

identity morphism precisely once [7,37], and
%e = Ap (7.23)

Let p € [p] € L, be a direct sum of irreducible morphisins in L., each of

which has a charge-conjugate morphisin defining a representation in L,,. Then
o

™

d(p) € {2 cos

{ N =3dy0F U (2, 00] (7.24)
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This is proven in [22]. Since d(p) = 1, for every morphism p € [p] € L)
it follows from (7.22) that if d(p) € I = : N = 3,4,...} then p is

irreducible. In this case, d(p) = d([p]) only depends on the equivalence class of

{2 cosF

p. By comparing this situation with the one described in [7,8] it follows that if
d(p) € I then the representation r, of By does not reduce to a representation

of the permutation group, Sn. [If p reduces to a representation of S, then

d(p) = d([p]) € N; sec [7]]

(e) By taking over results from [22,18], one sees that if p is irreducible and pS* o p%e

has exactly two irreducible subrepresentations then

nﬂwamm?& ﬂcT_.WJ,

ro(rt) = ; (7.25)

for some 6(p) € [0,1), where 7 is either an infinite multiple of a representation
of S, with Young tableaux of < d(p) rows or columus [7) orif 1 < d(p) < 2 then
d(p) € I, and ro is an infinite multiple of the Ocneanu-Wenzl representation of

By [23].

So far, therc are no natural physical models in two space dimensions known in
which the second case is realized, but it does appear in SU(2) pure Chern-Simons

theory [13].

In the second case, the braid matrices ro(rF1!) can be expressed in terms of the R-
matrices of the quantum group Uy(sl(2)), (28], with ¢ = ¢2™ ik This quantum group
then plays the role of a global, internal symmetry of the quantun theory. In analogy
to deep results of Doplicher and Roberls [26] one might conjecture that, in theories
of the type considered in this paper, and, for an irreducible morphism p € () € Lo
with d(p) < oo which has a charge-conjugate morphism, the representation v, of By
is always of the form

n.ﬂuﬂ«,aﬁbv ﬂc?ﬁur HV.

7ol _”rpu =

wlhiere rg is either a representation of 5, which comes from the representation theory

of a compact internal symmelry group, or o is a representation of B, which comes
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from the representation theory of a quantum group, for all n = 2,3,.... Unfortu-

nately, this is, at present, a speculation only verified in examples.

{f) In order to lend some support to the idea that there ought to be a general
theory of the statistics of superselection sectors in three space-time dimensions,
we wish to briefly discuss a useful element of a general theory, the so-called
fusion rules [27,28,21]: Let {pi}xes be a complete list of irreducible morphismns
of B¢ localized in space-like cones, as introduced in (4.1)-(4.4). By a "complete

list”, S, we mean that, for arbitrary 1 and j in §,

4 o i
pitopt = @ @ piy, (7.26)

where the representation bmm.i of A on Hy is unitary equivalent to the represen-
tation bm_. of Aon Hy, for all @ =1,...,Ni;;,k € §. The non-negative integer
Nyi; is the multiplicity of the representation p;* in _ama o .a.m._. By Proposition

5.4, .o._m.... 0 b“,.... and _ew..._ o bma are unitary equivalent. IHence
Niij = Nigie (7.27)

We shall assume that there is an involution, ~, on §, with =~ = k€ § = k € §,
such that, for every k € I, _nm. is charge-conjugate to bm... i.e. nm.. 0 .cm._ o _a_m._ o .cm..
contain the identity representation, p$*, precisely once. [Results in [8,37] show that
if d(pr) < oo, for all k € S, and the representations pi are Poincaré-covariant, for ail
k € S, see Sect. 8, then the involution ~ exists.] We may now interpret Ny;; as the
multiplicity of .o.m.. in bm; o Pn_. ohuﬁ..... Using again Proposition 5.4, we see that

Ca a5 o pCa g ,Ca Ca o ,Ca a Ca
PR 0P 0p;" = pim0pL 0p;" = pimOp;T 0Pt

Hence
.?wf..m = 2.:3. = .?_.w_.r. Aﬂmmv
. G i€ ICs
Next, we consider p;* 0 p;* 0 pi*. By (7.26)

N

(&} &4 C,
topt = . and
P O P Smw~ QWH Pointa)s
N
Gy {459 nim i
P 0Pm = @ b Pola)

nel pg=1
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Thus, the representation p* appears precisely

M Noim Nonjr (7.29)
mel

times in bm._ opito .am... Using again Proposition 5.4, it follows that

M .23._.3 23.‘.: = M 23.?.:. 23.:". ANWOV
mel mel

We define an | § | x | § | matrix, N;, with matrix elements in Z, by setting
(Ni)je = Njie- (7.31)
Then (7.30) says that
[NiyN;] = 0, forall4,jin 5. (7.32)
Since nma is the identity, Ng1; = 8&j, for all k,7 in S, i.e.

N, = I (7.33)

Thus, with the representations ?M.Tmm of A localized in space-like cones, one can

canonically associate

(i) statistical dimensions, d(pk);

> >
55 . 2 s
CJ?z:wﬂwmnc?&aznn&wmmcm oDmgsm:nmcvoawﬁoa.mM_,_rmﬁ wsamn:ELLm

S, which determine unitary representations of B and .m.w&, foralln=2,3,...
and
(iii) a family with | § | elements of | §| x| §| matrices N; with non-negative,

integer matrix elements (multiplicities) satislying (7.27),(7.28) and (7.33) which

commute with each other. They are called fusion rules.

The problem is to show that (i) - (iii) imply that § can be interpreted as the set
of finite-dimensional, irreducible highest-weight representations of a compact group,

G, in which case d(pi) = 1,2,3,..., for all k € §, [T7], or of some quantum group, QG,
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(25], in such a way that (i) - (iii) are consequences of the theory of tensor product
representations of G, Q@, respectively. This problem has been solved for theories in

four or more dimensions in [26].

It is useful to consider some examples.

1 = k=
(1) fs={1,2,...,nh, k=n—k+ 1, Nik; = 6ik4j~1(mod n), then the representa-

P Ca .
tions p.* are *automorphisms, d(px) =1, and G = Z,,.

(2) Suppose that all morphisms p$*,k € S, are self-conjugate, (i.e. k& = k, for all
k € §). Then, by (7.27) and (7.28), the matrices N;,i € S, are symmetric. Let
| § | be finite. We define

s = Mw (ING]I- (7.34)

It follows from results in [29] that

m
se {2 cos3r N =23,4,...}Y[2, 0]
Without loss of generality, we may assume that s = [IN2]|. Suppose that s =
2 cosf, N < oo. Then
ﬁZqu. = zn.w..., = %».L...#: H.wmm.v

and it follows from (7.27),(7.28),(7.32) and (7.33) that

1, if [i-1]|<k < maz(N —2,i+j),

Ny =
! 0, otherwise. 136

This is shown, for example, in [28]. It is well known, sce [25,29], that these are
multiplicities of the quantum group U,(sl(2)), with ¢ = e?™¥/N, In this case

?
the representations r,, of B,,n = 2,3,..., are the ones described in (e) , above,

with (N — 2)2 8(p) = 1 mod 1.

We sce that in examples (1) and (2), a considerable amount of the mathematical
structure of {p}*}res is alrcady coded into the fusion rules {Nk}res. It would be
interesting to know how general this observation is.

The themes discussed here, along with some applications to two-dimensional

condensed matter physics, will be discussed in more detail elsewhere.
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8. P]-Covariant, Localizable Representations,

Spin and Statistics.

In this section, we elucidate the role played by the unitary representation, U,,
of the quantum mechanical Poincaré group ﬂ..u.qf associated with localizable represen-
tations in L, described by morphisms, p = pCe, of the algebra BC».

We recall that in Sect. 3 the notion of representations of A localizable in cones
(sce Definition 3.3) was motivated by the properties of the covariant, positive en-
crgy representations describing (massive) one-particle states, see Definition 3.1 and
Theorem 3.2 In Sects. 4-7, Poincaré covariance was irrelevant, but now we wish to

describe its implications.

Definition 8.1. Let p € [p] € Lx, be a representation localizable in cones relative

to the vacuum representation mo. We say that pis a qw.ﬁ-noﬁlw:p representation of

B if there exisls a strongly continuous representation U, of .uw.ﬁ on Hp such that
bn..Hth\Cv = Uy(L) _cn._Tﬁ Uy(L)*, (8.1)

for all L = (A,z) € PL, with Up(L)* = Uy(L)™ = Uy(L™'). We say that a
‘m.ﬂ.-noéaw:ﬂ representation p is a positive-cnergy representation iff the gencrators
(Po, P) of Uy(z) = Uy((1L,z)) satisly the relativistic spectrum condition (3.12).

0

Remark. This definition is merely a transcription of Definition 3.1: If the repre-
sentation mg of p€ (B ) is unitary cquivalent to the representation (m, Hy) of B,
with 7 € Ly, then
Qnﬁhv = m,nl Q:TS HE Am.mv
where T, is the isometry from Hg onto Hy = H|,) constructed in (5.10)-(5.15).
The subsct of £, consisting of \._w.w.no<8.§:f positive-cnergy representations is
denoted by £5°°.

o

Given a morphism p € L¢ localized in a space-like cone C, we define

pr, = apopoag’. (8.3)
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It then follows from (3.9) that py, is localized in Cj, = {zeM*: L1z e ).

Next, we construct a unitary intertwiner I'(L) between p and py: If Uy is the

unitary representation of ‘U.ﬁ. on Hy then

ar(A) = Uo(L) A Us(L)™?, (8.4)

on Hy. By (8.1)-(8.4),

Pr(A) = ar(Upy(L)™" p(A) Up(L))

Uo(L) Up(L™") p(A) (Us(L) Up(L™1))"

: (8.5)
for A € A. Thus, we define the intertwiner I'y(L) by
La(L) = Uy(L) Uy(L7Y), (8.6)
and then
pL(d) = T,(L) p(4) (L), A€ A (8.7)
Since py, is localized in Cp, and pin C, it follows from Proposition 4.2 and (4.13) that
T(L) € (A(C) N ACL)) = B(C U Cy), (8.8)

where the algebras B(C) have been defined in (4.9). It follows easily from (8.6) that
I',(L) satisfies the "cocycle identity”

To(Li+Lz)" = To(Ly)* ar,(Tp(Ls)") (8.9)

and that I',(L) is strongly continuous in L.
It is easy to see that existence of unitary operators {I',(L): L € gwg:_ strongly
continuous in L and satisfying (8.7) and (8.9) is, in fact, equivalent to the ﬂ.ﬂ_.-

covariance of the representation p: The operators U,(L), defined by

Up(L) = T,(L)" Us(L) (8.10)

from the desired unitary representation of UW.H. on Hy.
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In order to be able to take over the theory of covariant representations developed
in [7], we require suitable localization properties for the "Poincaré cocycles” I',(L),
sharpening (8.8). Our assumption is a variant of assumption (C2) in Sect. 4; see

(4.18), (4.19).

(C2)) Let {L(t):0 < t < 1} be some path in P}, with L(0) = (1,0), L(1) =

(A,z), and let C be some space-like cone. We set
CL() = {zeM: L(t)"' =z € C}. (8.11)

Let S be a simple domain containing . A&Auhﬂhﬁvv. Then

T, (L(t) € A(S)", forall 0 < ¢t < 1. (8.12)

By assumption (C3), it then follows that, for every L € ﬂ..v.ﬁ.

r,(L) € B(CUCL) N A(SL) (8.13)
with
S = 4mDEr A CmH C(L(t)) ), (8.14)

0<t
{L()}=~
where II, is the set of all paths in gw.“‘ connecting the origin (1,0) € \_ww;q. toL € \__w.a_._
and vy = {L(t): 0 €t < 1}is an clement of Ig.
Let C, be an auxiliary cone in the space-like complement of the localization cone,

€, of p. Since € and C, are open scts, it follows from (8.13) that there is an open

neighborhood, U(C,C,), of (1,0) in P such that
T,(L) € B, forall L € U(C,C0). (8.15)
Let U be an arbitrary open neighborhood of (1,0). Then
{T,(L): L € U} determines {I'y(L): L € P1} uniquely. (8.16)
For, every L € \_@.ﬂ, can be written as a product

L = Ly...Ly, Ly e U, forz = 1,...,m. (8.17)
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Let LY) = L;...L;. Then, by (8.9), (8.10),

E Qnﬁh..v

=1

Up(L)

1l

Co(E)* T] on (TplZisa)*) Uo(E). (8.18)
i=1

Thanks to (8.15)-(8.18), the theory of @.ﬁ- covariant representations localized in cones
developed in [7,8] can be taken over to our framework essentially without changes.
It follows, for example, that if p; and p2 are \\E.,oo«.wlw:» morphisms localized in

space-like cones C; and C;, respectively, with (Cy U Cy) Cq, for some auxiliary

cone C,, then .m_n._ opyisa @H-noﬁlu:ﬁ. morphism of the extended algebra B¢, The
key idea of the proof [7,8] is to notice that if L is in an open neighborhood U of
(m,0) € gw.ﬂ so small that (C; UCy) (L) X Cq then

Toons(L) = Tp(L) p5"(Tpa(L)) (8.19)

is a Poincaré cocycle for p; o py so that

q}obuﬁhu = H...o_.c.ouﬁhuq Q.cﬁ.ﬁv Hmmov

is the desired representation of ﬁw.w with the property that
Ca a .
p1" o paag(A)) = U, op,(L) _um 0 p2(A) Up, 00, (L) (8.21)

Note that, by (8.15), the r.h.s. of (8.19) is well defined for L € U. By (8.16)-(8.18),
Tpiops(L), L € P, and hence Up, o psy are uniquely determined by {T', o ,,(L) :
L e U}

More generally, let py,...,p, be \_@.ﬂ.-no‘..wiw:v morphisms localized in space-like
cones, Cy,...Cy, respectively such that (C;U---UC,) C,. Then bm.. o w0 Py

a ﬂ.u%-noé.lu._: morhpism of L, and for L in a sufficiently small, open neighborhood

of (1,0) € PI,

Toro.op (D) = Tp(L) [ 5" 0 oov0 pf* (T, (L)) (8.22)

i=1
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which, by (8.15), is well defined and, by (8.16)-(8.18), determines Up, o... 0 pn uniquely.

We define

) (L) = TpomonicalL) Toyo.onll) (8.23)

P10 © Pa
It follows from (8.22) that, for L € U,

D (L) = K500 pf(Ta(L)): (8.24)

(
P10 Pn

r
Hence, using (8.3),(8.7) and (8.23), we sce that

poe o ...o?mavb 0...0 p5(A)

= Tpononea(D) (6§70 0+ 0 (8)1 © -o0 © P2 (A ononopini(E)

(L) 5 0 2ev 0 pf 0 1iv0 g5 (AT 00 (£)s

1

- Hdmu_uuo 20 @ Pu

(8.25)

forall L € ﬂ&ww (for L € U, (8.25) also follows directly from (8.7) and (8.24)).
It is casy to sce that (8.23), the cocycle identity (8.9) and (8.10) imply that

o

PLO.. O fu

(L1 <L) = H._mus (L1) QB?.;.PTSU

10 ©Pn

HJTV .on..ﬁhwv Qnﬂo:.ob.ﬁbuu«. Amwmv

PLO -

Let 7¢ denote Llie canonical projection from the covering group, ﬂ.ulﬂf of ﬁmﬂ to
Uqf Since the automorphism group {ap @ I € ‘PS is a representation of ‘UH: it
follows from (8.3) that, for alli =1,...,n,
?9_?0o?n._vibn?m__r;oo?m;iriy (8.27)

forall A € BS andall L € ﬂ.vw Hence

Ca r
Ly, o...ob.ﬁh_uq H_t_u...cb_ﬁhwu € .QM.... 2w 9 R _h&»v. ﬁmwmv

whenever m€L; = 7°Lj.

Since {ap} is a representation of ﬂ.“: it follows from (8.9) and (8.28) that

P el b 58 = (1, 0)} (8.29)
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is a representation of the fundamental group, q:ﬁvt = m(50(2)) = Z, of ﬂ.ﬁ. with

values in p{* o ... o p’*(.4)". Similarly, one can show that

{0 e o (B) + #°L = (T, 0)} (8-30)

is a representation of #Lﬁ;: with values in _om_. 0...0 bmah\pv__ Let us denote the
Iﬂ . .
element L € Py, with 7¢ L = (1, 0), in the homotopy class corresponding to | € Z

by l; lis e.g. a space rolation through an angle 27 . We set
H;.u— . oﬁsﬁ:LN“ ey sz = : HJM_._VO... 0 pn Tru. Am.muv
i=1

Next, we note that {Uy(L): L € .U.U. is really a representation of P). For, the
vacuum § € H, is invariant under Up(L), and {ar : L € u.u,U. is a representation of

d * o
P, as a *automorphism group on A, so that
U(L)AQY = ap (4)0n

only depends on 7°L. Since {AQ : 4 € A} is dense in Hy, this proves our claim.

We conclude that
Q_o.o.:o“...ﬁh.\v — H..:—o...cbmﬁhus‘ HOH .._._.nh = ﬁﬁu Dv Amwwv

Suppose that p; o ... o p; is irreducible. Since Foioop(L) € tm._ 0 ¢is @
Ca

pi*(A) = {A1: ) € C},it follows from (8.32) that
Usivoopilbax) = €05V NRuomamn) (8.33)

if Lyx is a space rotation through an angle 2, where s(pro...0p;) € [0,1)is the
spinmod. Z of the representation p; o ... o p;. In particular, if p is an irreducible
one-particle representation then s(p) is the spin of the particle mod. Z described by
p. More generally, every irreducible subrepresentation m of py o ... ¢ p; corresponds

to an cigenvalue ¢27#2(2) of Tyio.opi(Lax), where mﬁmv is the spin mod. 7 of the

o A
representation p.
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Next, we wish to relate the spin, s(p), of a representation p, (in case p is ir-
>
reducible), to ils stalistics opcrator, ey, defined in (6.25), (6.23) and (6.9). For
>

>
this purpose, it is useful to express €5, or, morc generally, €55 (see (6.42) and

P )
(6.38)), in terms of the Poincaré cocycles, I'(L). In fact the cocycles for the rotation
subgroup R = w.,mﬁmv of \WH suflice for our considerations. Thus, let p be a \W.qv-
covariant morphisi localized in a cone C. Let Lg denote a rotation through an angle

# € R = 50(2), and define
Co = {z e M*: L'z € C}, and (8.34)
Lp(8) = To(Le) (8.35)
Then, by (6.9), Definition 6.2 and (8.23)

>
mM = 1@

- pop

(61) Tp(82)" Tp(61) T2 ,(02) (8.36)
> .
if 8, < 8, with Cg, Cp, and
Co Ca, for all 8 € [0,8,]U0,8,], (8.37)

for some auxiliary cone Cq-

Setting 6, = 0 and choosing 8; = 8 € (—2m,0) such that Cg Cand U

n.\m?..o_
Gy Cq, we obtain
e< = T ()" T,(0). (8.38)
Since 2 + 8 > 0 and Cg ¢, we may choose an auxiliary cone mw,
with Ca U C,, and appeal to part (1) of Theorem 6.3 to sce that
a we[02m+0)
e = T3 (27 + 8)" Tp(2m + 9). (8.39)

By the cocycle identity (8.9),

T,(2r + 8) = T,(6) Ty(2m), (8.40)
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since ar,, is the identity. Moreover, by (8.23) and (8.9),

T2, (27 + 0)* = Tpop(27)" Tpop(6)" T(8) Tpl(2n).

(8.41)
If p is irreducible,
Lp(2m) = U,(2m)* = €71+, (8.42)
and we find that
& = Tiwalln)t Tos 0] 0P rreinl
= Tpop(2m)" T,(6)" Ty(6) e'mi* ()
= Tpop(2m) eF etir(o). (8.43)

We also have that ¢ - e5 = 1, see part (3) of Theorem 6.3, and hence (8.43)

implies that
(£5Y = T,..(2m) e=t™i4e), (8.44)

If p is not irreducible but is a direct sum of irreducible representations then it is still

true that U,(27) = I',(27)* commutes with I',(8) and we find that

€, = Toop(2r)* mM _Jnnm..qvu. (8.45)

it : :
If p© is an automorphism of B+, or, equivalently, p o p€= (B8 ) is irreducible,

then Theorem 7.3 tells us that
A ,
e5 = TN, G(p) € [0,1),
and, since T'yo,(27)" = U,o,(27) commutes with p o p(A),

[0, (2m) = e2ieleca) (8.46)
where s(p o p) is Lhe spin of the representation p© o p. Then we have from (8.44)

that

AKT:.QC& _

mud:.._ﬁ.:a 2) ml.:.n...ﬁbf
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s(pop) = 2s(p) + 6(p)] mod. L. (8.47)

If p is irreducible and pC* o pis not irreducible, but can be decomposed into a direct

sum of irreducible representations,
Ca —
ptop = @ Pl

>
then e and ['pop(27)" = Upo o(27) can be diagonalized simultaneously, and, on the
>
subspace, Hi, of Hy carrying the representation py, ey and [pop(2m)* are diagonal,

1.€.

>
27 i 0%
m.M _ir = gf°** ﬁnvﬁ_q.?

H,bohﬁwﬁvn [#, = g AR _i_...

and (8.44) yields

s(pr) = 2[s(p) + 8% (p)] mod. 1. (8.48)

Hence

- + nwa;?h?u\uvwnmbvv.

Equs. (8.47) and (8.48) arc spin addition rules which express the spins of ”two-
particle representations” in terms of the spin of the one-particle representation and

the cigenvalues of the statistics operator.

Next, we consider two different irreducible representations p and f carrying spin
s(p) and s(p) respectively. Repeating the calculations from equ. (8.35) to (8.45) we

find that

o Jagps H__wu_uﬁmi, mM., m»i??YfGZ.

e p Am.mav

By a particular choice of conventions (as(p) > as(p), see the last remark of sect. 6),

we may set €75 = 1L If 7 0 pisa dircet sum of irreducible representations,

el

peop = O pk (8.51)

k
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then

e$sln, = 7D (8.52)
Tso,(27) |3, = e 27 (o) (8.53)
as in the case of a single morphism. Replacing (8.52) and (8.53) in (8.50) we find
s(pe) = [s(p) + s(p) + 8%(p; §)] mod. Z. (8.54)
If 5 o pis irreducible, then (8.54) reduces to
s(pop) = (s(p) + s(p) + 6(p; p)) mod. Z (8.55)
and if p and 5 are unitarily equivalent it is easy to see that
8ps ) = 6(p) + 0(5) = 26(p) mod.Z, (8.56)
so equation (8.55) gives again (8.47).

Let 5 be the morphism conjugate to a localized morphism p. Then s(p) = s(5)
and 0(p) = 0(p). Furthermore, 5o p contains the identity morphism. From that one
can deduce that

0 = 2s(p) — 28(p) mod. Z, ie.

s(p) = 8(p) SQQ.WN. (8.57)

In analogy with the four-dimensional spin-statistics theorem [7,30] and with the anyon

model, equ. (2.9), we actually expect that

s(p) = 6(p) mod.1. (8.58)
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9. Scattering theory

The construction of asymplotic free particle states given by Ilaag and Ruclle
it the axiomatic formalism of quantum field theory has been extensively discussed
in the litcrature (sce c.g. [33] and references therein), as well as its adaplion to the
algebraic framework ([7,8]). Most relevant to us is the version of scattering theory
developed by Buchholz and Fredenhagen in [8] for non-local charged fields. Since
their results can be carried over to the present situation, essentially without change,
we shall only sketch how they are obtained and outline their significance. We refer
the reader to the cited works for details.

Let Vit be the forward hyperboloid of mass m and p € L¢ a covariant, irre-
ducible, massive one-particle representation localized in the reference cone C. We
denote the joint spectrum of the generators of translations in the representation p by
31 . 3 contains the isolated hyperboloid V:+; (see Def. 3.1). Given a positive time-
:n_:w <M29. e (which characterizes the direction of time in an appropriate Lorentz
frame), and a space-like cone C, one defines a subspace of the test function space

S(R*) as follows.

Definition 9.1. f belongs to the space £,(C;e) C S(R®)ifl the Fourier transform

f of f salisfics:
(1) supp f is compact and supp fn Y€ v
P

(2) ifp € supp ._m then

p—(p-e)e -
= G (€ - a) (9.1)

where a is the apex of C, int (C — a) denotes the interior of the cone € — aand
ee(p) = (M* + (p-€)® - p?)M/? is the relativistic energy in the Lorentz frame
determined by e.

Let ¥,(B) be a field interpolating between charged scctors iﬁv_ and \I_won_ of

Hiot. We define an extension to such fields of the action ay of the Poincaré group

on A as follows:

ar(¥o(B) | ) = Us, (L) ¥s(B) Un(L)™! (9.2)

A op A P
H|p) v H[p)
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where it is understood that we restrict our attention to covariant sectors in £33". On

L

xa, @ similar definition for the action a; of the translation subgroup of wv.w is always

defined.

We may now construct a single-particle state of mass m in the sector M|, from
a test function f in £,(C;e) and a field 3,(B) in FC(C). This one-particle state will
enter with certainty, at asymptotic times ¢ — oo, the region C + te and is defined as

follows:

blhite) = [ & \ @ pemiretirem @ fp)ag (vy(B)),  (93)

the integral being understood in the weak sense. One verifies easily that ¥,(f,1e)f2

is a single particle state which does not depend on t or e. The wellknown asymptotic

behavior of smooth solutions of the Klein-Gordon equation [38, 39, 40] implics that

Po(f,te) is essentially localized in the region € +t(c+s) C C+te for some fixed
vector s in C — a, a being the apex of c.

One can then prove for a set of irreducible morphisms p; € Le and test functions

fi € £, (Ciie),i =1,...n the existence of the following strong limit in H[, ...

s ahm..ﬁow Yo (frite) - p,(frrte) U = Pt (9.4)
if the cones C; are chosen mutually space-like separated and il Cy N ...NC, contains

some auxiliary space-like cone C,. Furthermore, if the localization cones Cy,...Cp
are kept fixed, ¥°* does not depend on the choice of the operators ¥,,( fi,te) and
P

of the Lorentz frame specified by e. ‘Thus we may write

out out

PO = by X ... X Pn (9.5)

and the closed linear span of the set of such vectors in H(, 0. 0p,) will be denoted

Uw. iﬂ%a«o a_n:_ﬁﬁ: LR ﬁ:m mv.
It is also easy to derive the following behavior of $°** € iﬂ_..,?: onr] (C11- ..Cri€)
under Poincaré transformations and braidings:
. out out
Upuoonn (D)7 = (Up (D)%) X oo % (Up (L) ¥n) (9.6)

Superselection Structure and Statistics in . . . 411
— out out
mﬁvmb:....bavﬁ = @ﬂl-?& X .. X .&.alpﬁ.u ﬁw.:

where 7 is the canonical permutation associated with b € By, and R is defined
as in Section 7.% Clearly, U,, ..o (L)¥°*" € x_oh.ﬁo...on,_ (LCyj... LCp;Le) and
NAFEH veeesPn) Pout € i_ﬁal:i i) AQHI.AC“ e .Qal,ﬁdv«_ mv. Equation Aw.ﬂv
implies in the case p; = -+ = p, that the permutation properties of wave functions

describing n identical asymptlolic particles will be given by the statistics operators 12

defined in Section 7,

Next, one proceeds to calculate the scalar product between two vectors Pport €

A A A
I_n..a.:ab;ﬁﬁf....ﬁnw e) and ¥°*' € H A (€15 <o 5 Crioe) where .P.,m;. € Le,

A
[pno.. op1]
i,7 = 1,...n. (This scalar product will vanish if p; % p: for some 1, hence we may
AL . . ; ;
assume p; = pi, i = 1,... n). The essential conclusion drawn from this computation

(sce [7, prop. 7.4} and [8, th. 8.3]) is that Hout

i oE_AQ: ...,Cn; €) is isomorphic to (a

subspace of ) the tensor product of one particle spaces \Iﬂﬂ_ﬁﬁ_: )®...® ﬂﬁﬁﬁzw e)
presenting n {recly moving particles at asymptotic time. It is clear that iﬁnﬁnm e)

is the subspace of one-particle states ) whose cnergy-momentum is restricted by the

condition

{p—(pe)-e |p€ supp¥p} C C—a, (9.8)

e is the apex of C. ‘

Although the result found in [7, 8] is somewhat modified in the present context,
the above conclusion still holds unchanged, thus completing the identification of
outgoing states with [recly moving particles at asymptotic times. A precise derivation

N
of the scalar product of two asymptotic vectors Pouty Your will be given in a more

convenient sciting elsewhere.

6/n Sects. 6 and 7, the operators Il were defined for reference morphisms py,...pn
localized in space-like separated cones. This was convenient, since then the isometrics
Ty Tpy5t # 3, ey be chosen to commule. In the present case one has simply to kecp

track of the ezact order of the Ty, =1,...1 appearing in 1(b;py,. .., pn).
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Finally, the closed linear span iﬁnﬂ ..opy) Of all the vectors contained in some
i_ﬂmo:. opn] (C1,...,Cn; e) is the space of outgoing n-particle scattering states which

are composed of single particle states from the representations py,...,pn. It can be
shown that this construction is independent of the choice of the time-like vector e,
that is of a particular Lorentz system. In the case of automorphisms p; = -++ = p,,

the structure of HP¥®

Ok, .. opy) has been carefully analysed in (5].
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