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We present details of a mathematical theory of superselection sectors and their statistics in
local quantum theory over (two- and) three-dimensional space-time. The framework for our
analysis is algebraic quantum field theory. Statistics of superselection sectors in three-dimensional
local quantum theory with charges not localizable in bounded space-time regions and in two-
dimensional chiral theories is described in terms of unitary representations of the braid groups
generated by certain Yang-Baxter matrices. We describe the beginnings of a systematic classifica-
tion of those representations. Our analysis makes contact with the classification theory of
subfactors initiated by Jones. We prove a general theorem on the connection between spin and
statistics in theories with braid statistics. We also show that every theory with braid statistics gives
rise to a “Verlinde algebra”. It determines a projective representation of SL(2, Z) and, presumably,
of the mapping class group of any Riemann surface, even if the theory does not display conformal
symmetry.

1. Introduction

Local quantum field theory in two and three space-time dimensions has structural
properties quite different from those of theories in four or more space-time dimensions.
In three-dimensional theories with charges not localizable in bounded space-time
regions, such as Chern-Simons gauge theory with charged matter fields, and in two-
dimensional chiral theories, the main novel features are the following. The statistics of
“charged fields” (more precisely, the statistics of superselection sectors) is described by
certain unitary representations of the braid groups generated by Yang-Baxter matrices,
so called statistics matrices, rather than by representations of the permutation groups,
as is the case for local quantum theories in four or more dimensions. This feature has
been anticipated in studies of particle statistics in the quantum mechanics of systems
in two-dimensional space [1,2], albeit in a less precise form. The braid statistics in
two-dimensional systems is more than a theoretical curiosity. It has found important
applications in the theoretical description of the fractional quantum Hall effect, due
to Laughlin and others [3], and it may be an important ingredient in models of
high-temperature superconductivity [4, 58). These developments are briefly reviewed
in [5,24]. The results in this paper and in [24] provide a general theoretical foundation
for braid statistics and its relevance in a theoretical description of two-dimensional
systems with infinitely many degrees of freedom satisfying — at least approximately —
locality (Einstein causality). It has been shown in [24] that the “charged fields” of
a local quantum theory in two spatial dimensions exhibit braid statistics only if (i) they
cannot be localized in bounded space-time regions (heuristically, this means that the
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theory has manifest or hidden local gauge invariance), if (ii) the corresponding charged
states have fractional spin ¢ 17, and if (iii), under a certain “minimality” assumption
on the structure of superselection sectors, the discrete symmetries of space reflections
in lines and time reversal are broken. Thus, two-dimensional systems with infinitely
many degrees of freedom in a strong external magnetic field perpendicular to the plane
of the system, as used in studies of the quantum Hall effect, or two-dimensional
systems exhibiting a “flux phase” are natural candidates of systems exhibiting charged
excitations with braid statistics. Among field theoretic models in three space-time
dimensions with charged fields obeying braid statistics are dynamical Chern-Simons
gauge theories (abelian and non-abelian) with charged matter fields, as discussed in
[24] on the basis of results in [6, 7,45, 68, 69, 70], and non-linear 0(3) — ¢ — models with
a Hopf term [8] which are essentially equivalent to certain abelian Chern-Simons-
Higgs models.

The braid statistics of chiral vertices in two-dimensional conformal field theory is
a fundamental structural property of these theories and plays an important role in
the classification of rational theories. It has been studied in many recent papers
[9,10,26,41,42,43,49,66] in a variety of different formulations. As two-dimensional
conformal field theories are basic building blocks for four-dimensional string theories,
the analysis of braid statistics is likely to have significant applications in string theory,
as already suggested through the work of Gervais and Neveu [11].

The ideas, results and techniques presented in this paper can be applied to the study
of chiral sectors of two-dimensional conformal field theory, provided one starts from
an algebraic formulation of these theories, as proposed by Buchholz, Mack and
Todorov [12] and others [13,22,26]. There is, in fact, an intriguing, close connection
between general three-dimensional local quantum theory and chiral sectors of two-
dimensional conformal field theory that we shall discuss in Sec. 6. It is a general version
of the connection between three-dimensional, topological Chern-Simons gauge theory
and the chiral sectors of some two-dimensional conformal field theories found by
Witten [69].

It might be clear from these remarks that we expect the braid statistics of low-
dimensional local quantum theory to be more than an interesting mathematical
structure. It is an intrinsic feature of some important systems in two-dimensional
condensed matter physics, of the theory of critical phenomena in two dimensions, and,
perhaps, of realistic string theories. This is one of the motivations underlying our
work.

We would like to emphasize another basic structural property of local quantum
theories with braid statistics. Independently of conformal invariance, a local quantum
theory with braid statistics gives rise to a “Verlinde algebra”; its fusion rules are
diagonalized by a unitary matrix, S, that can be expressed in terms of the statistics
matrices of the theory. Furthermore, one can construct a unitary matrix T that can be
expressed in terms of the spins of the superselection sectors of the theory and that
depends on a real constant ¢, defined mod. 8, which, in conformal field theory, is
interpreted as the central charge of the Virasoro algebra, but which, in the general
context of theories with braid statistics, emerges as a basic invariant of the structure
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of sectors. One then shows that S and T determine a projective representation of
SL(2,Z). The idea that, in a theory where all charged sectors have non-trivial braid
statistics, the S-matrix can be expressed in terms of the statistics matrices of the theory
goes back to [41,55]. In a context similar to the one of our paper, a construction of
the matrices S and T has also been described, independently of our work, by Rehren
[62].

It appears that these results can be generalized considerably. Using ideas from
Moore and Seiberg [41], one expects to be able to construct projective representations
of the mapping class groups of Riemann surfaces of arbitrary genus from the statistical
data, i.e., from the fusion rules and the statistics matrices, of local quantum theories
in which all sectors have non-trivial braid statistics. If correct, this conjecture will be
quite significant in the theory of subfactors and in three-dimensional topology. It might
be mentioned here that it has already been shown in [24,55] how to construct
invariants for links imbedded in S from the statistical data of local quantum theories
with braid statistics.

Thus we expect that the ideas and results discussed in this paper are not only making
contact with some important problems in two-dimensional theoretical physics but also
with some important topics in pure mathematics.

To conclude this introduction, we briefly summarize the contents of this paper.

In Sec. 2, we recall some basic aspects of the algebraic formulation of local quantum
theory of systems with infinitely many degrees of freedom. We introduce algebras of
local observables and develop their representation theory. We specify a class of
“representations of interest”, and we define a composition of representations in this
class and the conjugation of a representation. These notions are analogous to the
notions of the tensor product of two representations and conjugate representations in
the representation theory of compact groups. They define a tensor category.

We then define fusion rules as multiplicities of irreducible subrepresentations of the
composition of two irreducible representations. We also introduce Hilbert spaces of
intertwiners that are analogues of the Clebsch-Gordan operators in group theory.

Of course, our formulation is by and large taken from the basic papers of Doplicher,
Haag and Roberts [17, 18] and of Buchholz and Fredenhagen [20]. In particular, we
use the fundamental result in [20] that “representations of interest” of the observable
algebra are obtained by composing its groundstate, or vacuum representation with
*-endomorphisms localized in space-like cones.

In Sec. 3, we construct vector bundles over spaces of *-endomorphisms of the
observable algebra localized in space-like cones whose fibres are Hilbert spaces of
intertwiners. We specify the transition functions of these bundles.

In Sec. 4, we construct different local sections of orthonormal frames of the intertwiner
bundles and calculate the unitary transformations of the fibres mapping one section
of orthonormal frames onto another one. These unitary transformations provide the
braid (or statistics) and fusion matrices of the theory. Our construction is analogous
to the construction of chiral vertices, braid and fusion matrices in two-dimensional
conformal field theory.

We then derive the basic properties of the braid and fusion matrices and the
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polynomial equations between them. As an important corollary we establish a precise
connection between spin and statistics in theories with braid statistics.

In Sec. 5, we discuss further properties of the intertwiner bundles and introduce the
statistics parameter of an irreducible representation of the observable algebra, ie., of
a superselection sector [17, 22]. The statistics parameter is an invariant of the statistics
of a superselection sector. It is computed in terms of the braid and fusion matrices of
the theory, and its properties are elucidated.

In Sec. 6, we analyze the connections between the theory of superselection sectors
and their statistics in local quantum theory and the theory of subfactors of von
Neumann algebras, as developed by Jones, Ocneanu, Pimsner, Popa, Wenzl and
others [14, 28, 30,31,37,51,59,61]. Using results of Wenzl [59, 64], we completely
describe the braid statistics of certain fairly simple classes of local quantum theories.
It is likely that three-dimensional Chern-Simons gauge theories with gauge groups
SU(n) and SO(n) and two-dimensional Wess-Zumino-Novikov-Witten models are
examples of such theories. Our results slightly extend prior results of Fredenhagen,
Rehren and Schroer [22].

Finally, we show how one can construct two unitary matrices, S and T, from the
braid and fusion matrices of a theory with sectors having non-trivial braid statistics,
with the following properties: S diagonalizes the fusion rules of the theory, and
TSTST = S.

This paper is a compromise between a research and a review paper. Many results
have been worked out independently of other peoples’ work. We believe that certain
aspects of our approach and some of our results are new. But we wish to acknowledge
that there is a very sizable overlap between this work and the work of Fredenhagen,
Rehren and Schoer [22,62] and of Longo [30,31]. Since a considerable part of our
work, as already described in [23, 24, 26] has been developed independently, and since
it is sometimes useful to study complicated problems from several different points of
view, we believe it still makes sense to present the details of our approach and of our
arguments.

Of course, our work relies in a fundamental way on the ideas developed in
[17,18,20].
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2. The Algebraic Approach to Quantum Field Theory

The basic objects of the algebraic approach to quantum field theory [15,16] are
those physical observables of a system that can be measured in some bounded region
of space-time: to each open region ¢ = M3, we associate a von Neumann algebra /()
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of observables. These algebras are required to have the following properties, reflecting
physical principles which are believed to hold in every local, relativistic quantum field
theory:

(i) Isotony: if O, < 0,, then H(0,) < H(0O,).

(ii) Locality: if @, and O, are spacelike separated regions (this will be denoted by
0, } 0,) then «(0,) and /(0,) commute, i.e.

[A;B} =0, VA e #(0,), B e A(0,). 2.1)
We define the “algebra of all quasi-local observables” as

o =] A0), 22)

where the closure is taken in the norm.
(iii) Poincaré covariance: there exists a representation of the Poincaré group Pl as
a group of *-automorphisms of .o, a, o : ' = o, (A,a) € P!, such that

%a,a(H(O) = L(Oa, 0) (2.3)

holds, where 0, ,, is the image of ¢ under the Poincaré transformation (A, a).

For the sake of simplicity, we assume, from now on, that the regions @ are open
double cones, i.e. the intersection of a forward light cone with a backward light cone.
We also consider infinitely extended regions, such as (¢’ (the spacelike complement of
a double cone 0), or spacelike cones which are defined as follows: let @ be an open
double cone whose closure O lies in the spacelike complement of the origin in M?3.
Then

$=a+|) A0, aeM’® 2.4

>0

>

is a spacelike cone with apex a. For such infinitely extended regions, we define,

20):="J A0,),
<0

) 2.5)
A (€)= 0LC)« 40,) .

The relative commutant «/°(%) of the algebra /(%) for some region % is defined as the
set of observables in & which commute with Z(%).

The properties of a physical system described by a pair {«, a} can be inferred from
the representation theory of {<, a}, provided some criterion which singles out the
physically relevant representations is given. The superselection sectors of the system
are then described by unitarily inequivalent, irreducible representations of <.

In a series of basic papers [17, 18, 19] Doplicher, Haag and Roberts fully elucidated
the superselection structure of theories based on the following selection criterion [17].
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A representation j of & is considered as “interesting for particle physics” if
() = HL(0)) (2.6)

holds for any bounded double cone ¢, where 1 is the vacuum representation of </, (i.e.,
an irreducible representation of &/ determined by a Poincaré-invariant state, w, on
/), on the separable Hilbert space #,. The sign “~” in Eq. (2.6) means unitary
equivalence. The superselection structure of such a physical system can be described
in terms of the representation theory of some compact group which plays the role of
a gauge group of the first kind for the system [19].

The selection criterion (2.6) singles out physical states which are indistinguishable
from the vacuum state w outside any bounded space-time region and automatically
rules out gauge theories [17,20].

In an alternative approach [20], Buchholz and Fredenhagen consider representa-
tions ( j, #;) of o/ on a Hilbert space s which satisfy the following selection criterion
introduced by Borchers [46]. The Hilbert space #, carries a strongly continuous,
unitary representation of space-time translations implementing the corresponding
automorphisms o ., of &, ic.,

Uix)j(A) Ui(x)* = j(o,5(A)). @7
Furthermore, the joint spectrum of the generators, P;, of Uy(x) satisfies
specP,c V*,

where V'* denotes the closure of the forward light cone. This is the relativistic spectrum
condition. Such representations are called positive-energy representations.

For systems which admit a complete particle interpretation and without zero-mass
particles, results in [20] show that a positive-energy representation has the property
that, for any spacelike cone €,

j(°(®)) = 1{°(¥)) (2.8)

holds. Such representations are said to be localizable in spacelike cones. Condition (2.8)
is weaker than (2.6) and does not exclude a priori gauge theories. There is even some
evidence that it might hold in systems with zero-mass particles [21], for € fixed.
Buchholz and Fredenhagen then extend the analysis of [17,18,19] to the class of
representations localizable in spacelike cones. This involves some technical arguments
which will be sketched presently. A crucial ingredient of their analysis is the duality
assumption for spacelike cones in the vacuum representation (1, 5#,) [17,20],

(@) = L&) ™. 29)

The symbols “and ~* mean “taking the commutant” and “closure in the weak operator
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topology of B(#,)”, respectively. We will require a somewhat modified version of this
duality assumption. First, we restrict our attention to a particular kind of domain.
Let 6, be a wedge in the two-dimensional {t = 0}-plane. The causal completion,
S = (%), of €, is called a simple domain. If the opening angle of %, is smaller than =,
then & is a spacelike cone. We will assume that

LY = Yl (L)) ™ (2.10)

holds for simple domains in the vacuum representation.
If (j, ) is a representation localizable in cones, then Eq. (2.8) implies [20] the
existence of an isometry V from % onto the vacuum sector #] such that

(A) = VFAV,, VAe A°%). .11)

(From now on, we drop the symbol 1(-) and identify o with its vacuum representation
1(o ).) The construction of such an isometry involves using the Reeh-Schlieder theorem
and will not hold in cases where the Reeh-Schlieder theorem does not apply. We may
then define a representation pj = p, of .« on #, which is unitarily equivalent to j:

pe(A) = Ve j(A V. (2.12)
For A € o, py(A) is a bounded operator on 5] and by (2.11) py acts trivially on «/°(%):
pe(A) = A, VA € A(%). (2.13)

We say that the representation py is localized in the spacelike cone 6.
Performing the construction (2.12) for two different cones %, and %,, we get two
unitarily equivalent representations pg, = p, and p,, = p, on #,, ie,

PUAIT, ,, =T, ,,0:(4). (2.14)

P1P2 P

The unitary operators I, ,. are “charge transport operators” and play a basic role in
the following. Using the localization property (2.13) of p, and the duality assumption
(2.10), one can show that

() pe(H(F)) = L(F)7, for every simple domain & 2 .

(i) T, ,, € (L) if & is some simple domain such that ¢, U ¥, < &.

Property (i) implies that the representation p, of o/ is, in general, not given by a
*-endomorphism of .o¢, and property (ii) implies that the charge transport operators
I, ,, do not necessarily belong to /. This rather impractical situation is improved by
introducing an auxiliary C*-algebra %% (see [19] for an alternative approach). Let
%, be some auxiliary cone of arbitrarily small opening angle and let

(2.15)

C+x={yeM?:y-xe%,}. (2.16)

We define the enlarged algebra %% containing .o/ by setting
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B = ( U «E + x)‘")_". @.17)

xe M3

It has been shown in [20] that p, has a unique, continuous extension to %% which is
weakly continuous on (%, + x)™*, and coincides with p, on o If € is spacelike
separated from €, + x for some x € M3, then pg is a *-endomorphism of #%, i.e., pg is
a linear map from #% into %% such that

pe(A - B) = py(A)py(B) and Pe(A*) = pe(A)*. (2.18)

Moreover, locality implies that p is faithful and norm-preserving. If & is the spacelike
complement of €, + x for some x, then we see from (2.15) (ii) that the charge transport
operators I, , belong to the auxiliary algebra 2%, Once we have chosen an auxiliary
cone %,, we may extend the representations j of o to representations of #% as follows.
Pick a representation p on the vacuum sector which is unitarily equivalent to j and is
localized spacelike to %, + x, for some x € M3. Extend the representation p to an
endomorphism of #% and then use Eq. (2.12) to define the representation j% of %%
For an irreducible representation j, it is easy to check the following facts [20]:

(i) The representation j% coincides with j on the subalgebra o/ of #%.

(ii) The definition of j% is independent of the particular choice of the representation
p on the vacuum sector used in the construction, as long as p is spacelike to

%, +x, forsomexe M3, 2.19)

(iii) Let us consider two extensions j% and j% of the representation j to two auxiliary
algebras % and #% respectively. If A is contained in the algebra «#(%)™" of some
simple domain & spacelike to €! + x; and to €' + x,,, for some x;, x;; € M3, then
,(gl ,(‘" . .

j*e(A) and j*= coincide:

J(A) = j%'(4). (2.20)

For simplicity, we usually suppress the superscript %, of the representation j%,
although it has to be kept in mind that when we write j(A4) for operators not contained
in the observable algebra ., we are always working with a specific auxiliary cone €,.
For operators such as charge transport operators, belonging to /(&)™ for some
simple domain %, the choice of the auxiliary cone is irrelevant within the limits specified
in (iii).

The fact that p, is an endomorphism of #% (if € = (4, + x)' for some x € M?)
allows us to define a composition of representations. Let pj! and pJ2 be representations
of o/ on ¥, unitarily equivalent to j, and j,. If €, = (¢, + x) and 4, < (%, + x), for
some x, then, for 4 € o, p}i(4) € #% so that

P& o pg(A) = pi(pg(4),  Aed, (2.21)
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is well defined. Furthermore, (2.21) is independent of the choice of the auxiliary cone
as long as (4, + x) | %,, %, for some x € M>. We define j, x j; to be the u_nitary
equivalence class of representations of </ containing the representation py2 o py!(-) of
A,

pLoplej X,
If €, and ¥, are chosen to be spacelike separated, then [20]
Pz o pi(4) = pt o pi2(A) (2.22)

so thatj; x j, and j, x j, define the same unitary equivalence class of representations
of o, i.e.,

Ji XJz=js XJ;i. (2.23)

Clearly j, x j, is localizable in cones. From now on, we use the same letter to denote
a representation j of o/ on some Hilbert space J; and its corresponding unitary
equivalence class of representations. The meaning of the symbol will always be clear
from the context.

At this point, the analysis of the superselection structure carried out for four-
dimensional theories in [17, 18, 19, 20] breaks down in lower dimensional space-times,
in particular, in two space-time dimensions, for charges localized in double cones, and
in three dimensions if the charges are localized in spacelike cones. This is a reflection
of the topological structure of M?, d < 4, and is related to the appearance of braid
statistics [26], replacing the usual Bose-Einstein and Fermi-Dirac statistics of four-
dimensional quantum field theories [17, 18].

These problems have been investigated, within the algebraic framework, by Fre-
denhagen, Rehren and Schroer, for two-dimensional theories with local charges [22],
and in [23, 24] for three-dimensional theories with charges localized in spacelike cones.
In this paper, we follow a line of thought similar to the one presented in [24].

We now sketch the proof of several results pertaining to the superselection structure
of algebraic field theories which have been derived in [18,19, 20,22, 23, 25,29, 30, 31]
under natural assumptions on the physical system under consideration. In subsequent
sections, we shall only use those results of the following analysis that are summarized
in Definitions 2.1, 2.2 and Property 2.3, below.

First, we note that direct sums and subrepresentations of representations localizable
in cones are also localizable in cones. This follows from standard assumptions of
quantum field theory, i.e., positivity of the energy, locality and weak additivity, as
shown by Borchers in [27].

Next, we make a digression to define the index of an inclusion of factors, N < M, as
proposed by Jones [28] in the case of type II, factors and subsequently generalized in
[30, 37] to arbitrary factors. In our case, M will eventually be identified with the algebra
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(%)~ and N with p(s/(%)~"), where € is some spacelike cone chosen to contain the
localization region of p. We assume (without any essential loss of generality) that
/(€)"" is a factor of type 111, [47].

Let N = M be two factors and Q a joint cyclic and separating vector for N and
M — which exists if M and N are properly infinite [38]. (For M = /(%)™ and
N = p(«/(¥)™"), the vacuum vector is such a vector, by the Reeh-Schlieder property.)
If J?, J3 are the modular conjugations of N and M with respect to Q, we define
the unitary operator

To=Jy. (2.24)
By Tomita’s commutation theorem [39],
ToMTE = JRIRMIR IS

=JeMIcIJINJIF=N (2.25)

holds and we may therefore define a canonical endomorphism
Yo:M >N

AT ATE, AeM (2.26)
associated to the triple (M, N, Q). The properties of the canonical endomorphism (2.26)
have been extensively investigated by Longo [32, 33, 34].

If 7 is a normal, faithful semifinite trace on M, then 7 o yq is also a trace on M. For
aclass of traces characterized in [ 30] and called scalar traces, T o y, will be proportional
tot:

Toyg =41, 2 € (0; o0). (2.27)
In such a case, we define
Ind (N,M) = 4. (2.28)
This index is independent of the particular choice of Q.

In the general case of two infinite factor N = M, there are no semifinite traces on

M. But, given a faithful normal state ¢, on N and a conditional expectation ¢ of M

onto N, one can set ¢ = ¢, o ¢ and define the cross-products

N

N X0 R (2.29)

M=Mx,R (2.30)
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where 6%, ¢ are the modular groups of the states ¢, and ¢, respectively. From this
construction we obtain an inclusion of semifinite algebras [40, 30], N = M. The
canonical trace T on M is then a scalar trace, so that we may define

Ind,(N, M) = Ind;(N; M). (2.31)

This definition is independent of the choice of ¢, and coincides with (2.28) in the case
of semifinite factors, N, M. The index of N in M, Ind(N, M), is then given by the
minimum of Ind,(N, M) taken over all conditional expectations ¢ of M onto N (such
a minimum exists [30]). For M = /(%)™ and N = p(=/(%)™"), we define

Ind(p) = Ind(p(/(®)™"), #(6)™") (2.32)

where the right hand side of (2.32) is independent of the particular choice of € [30].
A theorem of Jones [28] tells us that the value of Ind(p) is contained in the set

n . .
{4 coszz, n= 3,4,..,}\) [4; 0]. In the following, we will restrict our attention to

endomorphisms p satisfying Ind{(p) < co. Such representations p always decompose
into a finite direct sum of irreducible representations of finite index [31]. Conversely,
the set of representations of finite index is closed under taking direct sums, sub-
representations and products [30, 31].

Longo then proceeds to define the conjugate g of an irreducible morphism p of finite
index as the unique *-endomorphism (modulo inner automorphisms) which satisfies

pop=ra (2.33)

where yq : (€)™ — p(#(¥)~*)is the canonical endomorphism of Eq. (2.26). A beauti-
ful result obtained in [31] characterizes the conjugate morphism p of an irreducible
morphism p of finite index as the unique morphism (up to inner automorphisms), such
that pp and pp contain the identity as a subrepresentation precisely once. This
characterization is analogous to the characterization of the contragradient represen-
tation in the dual of a compact group which motivated the original construction of
the conjugate charge given by Doplicher, Haag and Roberts [18]. It should be noted
here that all the previous results on the structure of superselection sectors had already
been obtained by Doplicher, Haag, and Roberts [17, 29] for four-dimensional theories,
with the concept of statistical dimension, d(p), of a sector p replacing the index Ind(p).
The relation between the statistical dimension and the index has been fully elucidated
by Longo [30] (see also [22]). We will come back to this result later on, since it requires
a precise definition of the statistical dimension.

Let us now review the covariance properties of morphisms. We start with a definition
generalizing Eq. (2.7).

Definition 2.1. A *-representation j of & on a separable Hilbert space ; is called
covariant if there exists a strongly continuous, unitary representation of the (covering
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group of the ) Poincaré group implementing the corresponding automorphisms of .o

UA, @)j(ADUSA, a* = j(oa,a(A))- (2.34)
O

It was shown in [18] that subrepresentations, direct sums as well as products and
conjugates of covariant representations are covariant. The proofs, which hold for
charges localized in double cones require some slight modifications for theories with
charges localized in spacelike cones which are given in [23]. The joint spectrum of the
generators of translations is analyzed in [ 18] (and in [20], leaving aside the assumption
of Poincaré covariance of the sectors under consideration; see also {35] for further
results). The main outcome is that the set of representations satisfying the relativistic
spectrum condition is closed under taking products, direct sums, subrepresentations
and conjugates.

Definition 2.2, We denote by L the complete list of unitary equivalence classes of
irreducible, covariant, positive-energy representations of {.#/, a} of finite index localiz-
able in cones.

Property 2.3. (P1) Every covariant, positive-energy representation of {s/,a} of
finite index is completely reducible into a finite direct sum of irreducible covariant
positive-energy representations belonging to L.

(P2) There exists a unique involution (“charge conjugation”)on L: je L »je L,
such that j x j contains the vacuum representation, 1, of &/ precisely once as a
subrepresentation. j is called the representation (class of representations) conjugate
to j.

(P3) The set of covariant, positive-energy representations of {,«} of finite index
which are localizable in cones, is stable under taking direct sums, subrepresentations,
conjugates and composition. O

Finally, we remark that the condition Ind(p) < oo is always satisfied in theories
containing only massive particles. This result was derived from the spectral properties
of such theories by Fredenhagen [36].

It follows from (P1) and (P3) that, for i, jin L, i x j may be decomposed into a
direct sum of irreducible representations belonging to L:

w
ixj=@ @k 2.35)

kel u=1

where k® is unitarily equivalent to k € L and Nf € {0, 1, 2,...} is the multiplicity of k
ini x j. By property (P2), Nj; can also be interpreted as the multiplicity of 1ink x i x j.
This and (2.23) show that

Ni =Nt = Nj,. (2.36)

We define |L| x |L| matrices, N;, j € L by setting
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(N)f:= NEe {0,1,2,...) 2.37)

(IL| is the cardinality of L). One easily sees from (2.23) that

Ny=1, NN;= Y NEN,, (2.38)
kel
[IN;NJ=0 Vi jeL (2.39)

(see [23, 24]). These properties identify the matrices {N;};_, as matrices of fusion rules.
It is an open problem to classify all possible fusion rules. For examples, see [23, 24,
48], and references therein. Another important property of the fusion matrices N; is
given by the following lemma.

Lemma 24. [22] d(p;) := Ind(p;)'? is the largest eigenvalue of the matrix N;. [

The proof is given Sec. 6.

Suppose now that Nj; # 0. Then k appears Nj; times as a subrepresentation of j x i.
Equivalently, we may say that the representation i p} of & on # contains Nj
subrepresentations k' e k, p =1, ... Nj. This and Eq. (2.35) imply that the super-
selection sector J#, can be decomposed into a finite direct sum of orthogonal subspaces

N
# = @ P Ak j; ) (2.40)

keL u=1

with the property that the representation i o p}, of & on #(k; j; 1) belongs to class k.
Equivalently, Eq. (2.40) implies the existence of Nj; partial isometries

Vil i~ H,  p=1,.. Nj (2.41)

satisfying the intertwining relation

i o AV pl) = VM pl)k(4) (242)

and such that
Vi (0d)* Vi (pd) = 8,0, 11 4, (2.43)
VAPV pd)* = Puk; js ). (2.44)

The range of V,*(p}) is the subspace #;(k; j; u) and P;(k; j; u1) is the projection onto this
subspace. Finally,

N
Xk‘, Zl VP VHpD* =1 - (2.45)
e



Rev. Math. Phys. 1990.02:251-353. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 03/02/15. For persona use only.

264 J. FROHLICH and F. GABBIANI
If we define a complex vector space ¥;(pi), of operators

V. - K, (2.46)
satisfying the intertwining relation

i(pH(A)V = VK(4) (2.47)

W

then, by (2.40), the range of every V € ¥;(p), is contained in the subspace @ H(j;k; )
u=1

of #,. The vector space ¥(pi), carries a natural scalar product. For V and W in ¥;(p}),
V*W is an operator from 5 to J#, which by (2.47) satisfies

k(A V*W = V*Wk(A). (2.48)
Since k is irreducible, it follows from Schur’s Lemma that
V*W = A-1, ieC. (2.49)

The complex number A depends anti-linearly on V and linearly on W. Moreover, for
V = W # 0, 4 is strictly positive. Hence,

KV;WH =4 (2.50)

defines a scalar product on ¥j(p%),. With respect to this scalar product, the set {¥,*(p{),
u=1,... Ni} of partial isometries given in Egs. (2.41)-(2.44) is an orthonormal basis
of ¥i(pi),. As a complex Hilbert space, ¥;(p), is isomorphic to CV* equipped with
the usual scalar product.

Finally, we notice that if V € ¥;(p%), is an intertwiner between the representations
i o p} and k of o7, it may be considered to be an intertwiner of the representations i o p,
and k of an auxiliary algebra #%, for some spacelike cone %,, provided %, + x is
spacelike to the localization region of p, for some x € M3, This allows us to apply the
intertwining relation (2.47) to operators 4 in #%, for example to charge transport
operators.

3. Bundles of Intertwiners for the Observable Algebra o/

3.1. Irreducible representations

We wish to interpret the intertwiners V(p) € ¥7(p), as sections of a vector bundle over
the space of morphisms localized in spacelike cones. We shall construct such a vector
bundle, leaving aside topological questions. In the following, we consider a class, j, of
representations of .o/ as well as the set of irreducible morphisms, p € j, localized in
spacelike cones.
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We start by defining the asymptotic direction of a spacelike cone € Choose a polar
coordinate system (7, 8) in the {t = 0}-plane and project % onto the plane to obtain a
wedge €. Define the asymptotic direction §(%) as the f-coordinate of the line bisecting
the wedge €. If € = (%) is the causal completion of a two-dimensional wedge %, then
0(%) is the 0-coordinate of the line bisecting the wedge %,. The asymptotic direction
8(%) is well-defined modulo 2x. If p is a morphism localized in the spacelike cone €
then we define the asymptotic direction of p as

asp = 0(%). 3.1
Clearly, two spacelike separated morphisms p; and p, satisfy as p, # as p, (mod 2n).
Let us pick a reference cone %, of asymptotic direction zero with apex at x = 0 so

that &, is the causal completion of a two-dimensional wedge C,. Let S be the set of
translates and rotates of ,:

S = {%,6.n):= R(O)%, + x, R(0) € SO(2), x € M3} (3.2)
and S the set of spacelike cones contained in some G99 €S:

S = {®%, % is a spacelike cone and there exists %0,y € Ssuch that ¥ = 4,4 ,,} (3.3)

We restrict our attention to morphisms p localized in some spacelike cone € € S:
MF = {p € j|pislocalized in € € S}. (3.4)
Two subsets .#; and .#]" of .# are defined as follows. Consider the spacelike
complement of 6, U €, ), G,(x,0) being the rn-rotate of 4,. It consists of two distinct,
connected regions whose projection on the {t = 0}-plane is sketched in Fig. 3.1. We

choose two auxiliary cones €, and 4’ spacelike to €, and %, o,, each auxiliary cone
lying in one of the connected components of (%, U %,,. o))’ (see Fig. 3.1).
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Define
S* := {%,.x) € S such that 4 ,, is spacelike to € + y for some y e M>} (3.5)

S* := {% € S such that € < %, ,, for some %, ,, € S*} (3.6)

for # =1, II and
MY = {plp e M, pislocalized in € € S*}.
Clearly, the two sets 4, # = I, 11 cover #}~. The intersection .#] N .#" is described

as follows. Denote by 2(%,) the set of spacelike cones contained in S’ N §'' which can
be joined to the reference cone €, by a continuous path inside S* n S*’. Let

P(8,):= {€¢ € S' 5", such that € = %, ,, for some G, ,, € (%)}  (3.7)

and

M(P(E,)) = {p € M¥ such that p is localized in € € P(%,)}. (3.8)

Then
MM = MPE)) ] ] PG 0))) (3.9)

where the symbol | [ denotes the disjoint union. In the following, we will always work
with morphisms localized in a common “coordinate chart” .#/ or .#/" of Jlf In
each one of the sets .#*, # = I, 11, it is possible to define the asymptotic direction
as,(p) of a morphism p unambiguously. This is most easily seen in the following
figure:

Fig. 3.2
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where p and § are morphisms localized in %, and %; respectively. The geometrical
situation depicted in Fig. 3.2 corresponds to imposing

@) as/(p) e (—2n + af;af)
forpe #],  wherea' =0(€])e0;n).
(3.10)
(ii) asy(p) € (@' 2n + a'f)
forpe #{',  wherea!! = 0(€") € (—n;0).

The corresponding angle functions 0,(%), # = I, II for spacelike cones € € S are
defined similarly. For a morphism p € .#] n .#]" we have

2 ifpe Jﬂ(@(%(n,m))

asy(p) — as;(p) = {0 it p e MPG) (3.11)

(see Fig. 3.2).
If two morphisms p, and p, are contained in the same subset .#*, # = I or 11, then

there exists an intertwiner I, such that

pi(ATS,, =T}, p:(4) (3.12)

P1P2 P1P2

holds and T}, ,, belongs to the auxiliary algebra %%,
RB* = B (3.13)

Moreover, any other unitary operator I' intertwining p, and p, differs from I’} only
by a phase factor: since I'*I' 7, intertwines p, with itself and the representation p, is
irreducible on the vacuum sector, it follows that

r*rr

P1P2

= e, (3.14)

for some 6 € [0, 2r).
Let the unitary and projective unitary groups of the algebra #*, # =1, II be
defined by

u* ={I'e B*IIT* =1} (3.15)

and
PU* = Y*/U(1). (3.16)
In the definition of P%*, we identify unitary operators in % * differing only by a phase

factor. If we choose a reference morphism p, € .#7, then the set of morphisms p € M
is in one-to-one correspondence with a subset of P *:

MP 5 p[T} e Pu* (3.17)
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where I, € #* satisfies

p(AT), =T p(4) (3.18)

ooy opr

and the square bracket [ ] denotes the equivalence class of I}, in P%*. It will be
convenient to use this fact later on.

Let G be the (covering group of the) rotation and translation group in three-
dimensional space. Then G is a subgroup of the (covering group of the) Poincaré group
Pl. We label elements of G by g = (6, x), where (6, x) corresponds to the action

g'y=0,xy=ROy+x, yeM? (3.19)
of G on M5,
For a covariant representation j of the observable algebra o/ (see Definition 2.1), we
can define an action of G on #f as follows. If p € j and (A,a) € P, set

U,(A,a) = V UM, @)V, (3.20)

where V, is the isometry, unique up to a phase, used to define p (see Eq. (2.12)).
Following Doplicher, Haag and Roberts [18] one constructs the cocycles

T(p;9) = Ui(@U,(g7"), geP! (3.21)
and the Poincaré transformations of p:
p,(A4):=T(p;9)p(A)T (p;9)*. (3:22)
One easily checks that if p is localized in the cone &, then p, is localized in
€, =1{g9 x|x €} (3.23)
and hence, for p € A and g € G, p, € M. The map

n:G x .,/{j“’r_.,,/{j“r

(3.24)
(g:0) > 1,
defines an action of G on .#/*, as one easily checks.
In particular the “cocycle identity”
(91923 0) = 1913 p,,) (3.25)

holds. In the following, we only use the translation and rotation covariance of the
representations in L. For je L, let Uj(2n) be the unitary operator representing a
rotation by 2z. Clearly, U(2n) commutes with j(s/) and, since j is irreducible it is
a multiple of the identity:



Rev. Math. Phys. 1990.02:251-353. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 03/02/15. For persona use only.

BRAID STATISTICS IN LOCAL QUANTUM THEORY 269
U(2m) = e?™s. (3.26)

where s; is called the spin of the representation j. It labels irreducible representations
of the covering group of the rotations SO(2) = R and hence can be any real number
in the interval [0; 1). If the representation j contains one-particle states, then the spins
of the corresponding particles will be equal to s; (mod Z).

We introduce the following notation:

Ju:={V(p)e¥i(p):pe M} (3.27)
The space Ji, equipped with the projection

pr: Jijk had ‘/”fr
(3.28)
Vip)—p

has fibres pr-i(p) = ¥i(p), isomorphic to C™. We can give the two sets
N;* =pr {(#}P), # = I, II alocal product structure,

N = MF x CY, (3.29)

as we now explain. Choose a reference morphism p, localized in the reference cone
%,, p, € M ~ M]" and an orthonormal basis, {V,""(p,)}:’f:k‘l, of the fibre ¥;(p,), over the
reference morphism p,. Let p € A7, # = I, 11 be localized in a cone € of asymptotic
direction as, p. If [T%, ] is the element of P%* corresponding to p, we pick a rep-
resentative I}, € %* of [T}, ]. Then the operators

Vik(p) = i(T

LIVae),  a=1,.., Nf, (3.30)
satisfy the intertwining relations (2.47) and are thus elements of the fibre ¥;(p),; the
representation i occurring in Eq. (3.30) is the extension of the representation i of o to
B*, # =1, 11 (see Sec. 2, (2.19)), and V% (p) intertwines the representations i o p and
k of #*, # = I, 11 (see the last paragraph of Sec. 2). Furthermore, the intertwiners
Vis(p), a=1,..., N} form an orthonormal basis in ¥;(p), under the scalar product
(2.50). Hence, the mapping

_/16# - ./lj# x CNi
(3.31)
V(p) = (p; {<VEA (p); V(p)> 1N )

defines coordinates of V(p)in .4} x CNi. There is still a phase ambiguity in Eq. (3.31),
due to the fact that we have not yet specified which representative I}, of the equiva-
lence class [T}, ] is chosen. The choice of I, proceeds as follows. Since p is localized
in €, there exists some cone %, ,, € S such that € < %0, holds, by definition of
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M. Choose such a cone %0,.0 where 0, is fixed by the convention (3.10). Rotate
and translate the reference morphism p, to the cone %, . by using the Poincare
cocycles corresponding to a successive rotation 6, and translation x of p,:

Prio,.(A) = T(p,3 (04, %)) p (AT (93 (04, ¥))* . (332

The morphism so obtained is localized in %, ,)- Since the localization cone € of p is
contained in %, ), there exists an intertwiner V, € (%, ) " between p and

pr(o#,x):
p(A)V, = #Pr(o#,x)(A)- (3.33)

We then choose the intertwiner I'}, between p and p, as
T7 = V,[(p:(0,,%), #=11I (3.34)
If p € M] ~ .#]' we require further that %, ,, and %,,, ,, be chosen to coincide

o0 = Croun = brox (3.35)
and that
Vi="Vy (3.36)

holds. The remaining phase ambiguity, due to the fact that there are, in general, many
cones %, ,, such that € < 6, ,, and that V,, is unique only up to a phase, # = 1,11,
is irrelevant in the following.

To complete the description of the bundle J;, we have to specify its transition
functions. This also determines the group of the bundle J;;. We evaluate the transition
functions on morphisms p € .#] N .#" localized inside spacelike cones %, ). As we
will see, they depend only on whether €, ., belongs to 2(%,) or to #(%,, o). These
two different situations are depicted in Fig. 3.3 (a) and (b} below.

€

e'(e,m '/
% ®rie,0 e
/\ T Cr %

I
ec

€

€a

@ (b)

Fig. 3.3
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Let V(p) € J;; be an intertwiner in the fibre over p. Its coordinates are given by

(03 (GO (s O, X)) Vi (0, V(0D 13E,) (3.37)
in 4} and by

(93 {<HVYIT (p,3 Brt, ) V(RS VIR D Y3 (3.38)

in A", where we used the fact that ¥, = V;, to suppress the Latin index 1, II (see Eq.
(3.36)). We compute the transformation mapping the vector a; = {i(V)i(T'(p,; (6, x)))
x V¥p,), V(p)> 1%, to ayp = {<i(V)i(T(p, (011, %)) Vi* (o V(p) D }Nsy: @y and ay are

the coordinate vectors of V(p) with respect to the orthonormal bases V%(p) =
i(V)i(T (3 (0r,5))) Vi*(p,) and Vi(p) = i(V)i(T(p,; (B11,))) Va*(p,) of ¥i(p). Hence, the
transition matrix by (11, I) = (b, (I1,1)%) is given by

M
Vati(p) = ﬁzl by (L, D Vi (p) (3:39)
where b, (I1, I} = <Vj¥(p); Vii(p) ). Clearly, b, (I1,1) € U(N}), since it relates two or-
thonormal bases in C¥. The formula for b, (I1,1)is given in the next theorem.
Theorem 3.1. The transition matrix by (11, 1) introduced in Eq. (3.39) for the mor-
phism p € M| ~ M]" is given by

X630 ifp € MP(Eyx.0))

b1 1) = {1] ifp € MPE)), (3.40)

that is, b, (11, 1) depends only on the two sectors i, k and on the two disjoint components
M(P(8,)), MPByin,0))) Of M} M}, but not on p. O

Proof. We evaluate the scalar product
by (11, 1)5 = <Vﬂ';(/’)a Vallkl(p)> = Vﬁ(l’)*w;‘l(l’)
= V(o *i(T (0,3 (00, )V iV iV)(T (0,3 (61,))) V¥ (p,).  (3:41)

The unitary operator
i(T (3 (011, 2)))*i(V)* (3.42)

on the Hilbert space 5 is given by extending the representation i of &/ to the algebra
#" (see the paragraph following Eq. (3.30)). Similarly,

iV)iT (o, (6),)) (3.43)

is given by the extension of i to #'. These two extended representations need not
coincide in general. Nevertheless, since V belongs to the algebra (%, ,,)” where
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%10, ) is spacelike to €, + yand to €," + z, for some y, z € M>, we can apply Eq. (2.20)
to conclude that

iV)*i(vV) =1 (3.44)

in Eq. (3.41). We can now rewrite
ba(I1, % = V(o )*i(T(prs Brr, 2)* )Ty (61, ) Vi (py) - (3.45)
The simple argument which allowed us to compute i(V)*i(¥V) will in general fail for
the Poincaré cocycles of Eq. (3.45), because of their weaker localization properties.
Nevertheless we can calculate by (11, I)2 as follows. It has been shown in [18, 23] that

if two superselection sectors i and j are covariant, then their product is also covariant,
and a simple calculation [18, 23] shows that, for g = (6,, x) or (8;, x),

Ui (g™ = Ulg)*-i(T(p; 9)) (3.46)

holds; (see Eq. (3.21) for the definition of the Poincaré cocycles I'(p; g)). Hence we may
write

i(T(py; O, X)) Ve (pr) = UilBr, x) Ui, (01, )7 Vi (p,) (3.47)

i(r(Pr§ 61, x))) V;eik(l’r) = U014, %) Uiop,((ell’ x)_l) Vaik(l’r) (3.48)

where (64, x)™" denotes the inverse of rotation by 6, followed by the translation by
—x in G. We can now apply a basic result of Doplicher, Haag and Roberts [18] stating
that an intertwiner between two covariant representations of o/ automatically inter-
twines the corresponding unitary representations of the Poincaré group:
Uses, (9)V*(pr) = Vi*(p)Uilg), g € P1. (3.49)

Thus we may rewrite Eqs. (3.47), (3.48) as

i(T(p,3 (01, ) Va*(pr) = U1, )V (p ) Un(61, %)) (3.50)

i(T(p,; By x))) I/ﬂik(pr) = Ui(6y1,x) V;aik(pr) U611 x)7). (3.51)
Inserting these equations in (3.45), we find,

by I1, D2 = Ug((0y1, x) " J* V5*(p,)* Ui(Byr, X)* Uiy, )

X V:zik(pr) Uk((eh x)_l) (352)

or
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ba 1,1 = Ug6;1, ) V5*(p,)* U(Orr, )7 ) U6y, x)
x V¥p) U6, %)7"). (3.53)
An easy calculation shows that

Ui((elb x)—l ) Ui0,,x) = Ui(09 —R(- 911)") Ud6; — 61,0

x U(0; R(—6)x). (3.54)
Using Eq. (3.11), we then see that
—2mis; 7
- _fJemrm ifpe M(P (B, 0))) 355
Ui((glls X) )Ui(gl’x) - {1 lfp e ./I{(.@((g,)) ( N )
By the orthonormality of {Va"‘(p,)}fﬁfl,
Vﬂik(pr)* Vaik(pr) = 5aﬁ' (356)
We also find
e if p € M(P(Gyr.0))
)= it 3.57
Ui (011, %) Uh((elax) ) {1 ifp Jl(g’(%)) ( )
Combining (3.53)-(3.57) we obtain (3.40). [ ]

This completes our description of the vector bundle structure of J; : J;, is a non-
trivial U(1)-bundle, a fact which reflects the topology of the manifold of spacelike
asymptotic directions of space-time.

Finally, we remark that all considerations in Sec. 3.1 are independent of the par-
ticular choice of the reference cone %, and of the auxiliary cones €/ and €!*. This will
also hold in the following sections.

3.2. The intertwiner bundle of a product representation

We construct an intertwiner bundle J, ,, for a product representation p x g, where
P, q € L, in analogy with our construction in Sec. 3.1. Considering the vector space of
intertwiners ¥;(p* o p?), for the product p” o p? of irreducible morphisms p? € .4 ¥,
p?e ME, we observe that the full reducibility of composed representations (property
(P1) of Sec. 2) implies that it can be constructed in terms of the intertwiner spaces
Y1(p?)m and ¥,,(p?), of irreducible morphisms p?, p? This will allow us to calculate
the transition functions of J;, ., in terms of the transition functions of Jj,,, J,..x-

Consider the representation I o p? o p? of the observable algebra .o7. This represen-
tation can be decomposed into a direct sum

lopPopi= P P kW (3.58)
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where Nj;,, denotes the multiplicity of the representation k in lo p? o p9 Hence, we

may define a complex vector space ¥;(p? o p?), of intertwiners
V(p? o p®): o - (3.59)
satisfying
I(p? o pU(A))V(p? 0 p?) = V(p? o p¥)k(A). (3.60)

. . . ko .
This complex vector space is isomorphic to CMizxs, for arbitrary p? € M5, pie MF .
Performing the successive decompositions

NG

lopP =@ P m", (3.61)
m a=1
NX,

mop?= @ P k?, (3.62)
k =1

and comparing these results with (3.58) we conclude that

Nf .= Y NN, (3.63)

mel

where the sum on the right hand side extends over the finite subset of representations
in L satisfying Nj7- N, # 0. Let {(Vim(p?)} Nz | {Vﬂ’”"(p“)}g'i'f be orthonormal bases of
¥(p*),, and ¥, (p9), respectively. Then

{(Vi"(p")Vi*(p9),a=1,...NZ, B=1,... Ny, me L}, (3.64)

is an orthonormal system in ¥;(p” o p%),, since each intertwiner satisfies Eq. (3.60).
Here {V™(p?)}¥% and {Vﬂ""‘(p“)}gii’ are understood to intertwine the corresponding
representations of an auxiliary algebra #%, where €, is spacelike to the localization
cones of p?, p?. Equation (3.63) implies that (3.64) is really an orthonormal basis of

Y(p? o p?), or, equivalently

Yip? 0 pN = B VP ) ® V(PP (3.65)
CViona = @) C5 @ CV¥oa. (3.66)

Naturally, Egs. (3.65), (3.66) generalize to arbitrary order products p? o p?o--- o p*

We now pick a reference cone %, of asymptotic direction zero, two reference mor-
phisms p?, p? localized in %, and two auxiliary cones €/ and €/, as in Sec. 3.1. We use
the following notation:

ME = {p"op“’,p’eallf,p“edl{q*}, # =111 (3.67)
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ME =M oMY, (3.68)
so that #},, ~ #], is given by
Mg Mg ={p" 0 pUp?e Myn M,
ple Min M} (3.69)
Next, we define the space
Jipxax = {V(p? 0 p?) € ¥i(p? 0 p%), pP o pte M, (3.70)
and the projection
Pridipg = M5,
(3.71)

V(p? o p?)— pPopf.

The fibres of Jj, ., are given by pr~'(p” o p9) and are isomorphic to CVivxa, The two
sets A%, =pr i(#}F.,), # =1, II have a local product structure which is easily
described in terms of the local product structure of J,,, Juu- Let { I{,’"‘(p,")}ﬁ;"l
and {V,,"'"(p,")}],;’if be orthonormal bases of ¥;(pP),, and ¥,.(p3):, respectively. Then
{Vm’"'(p,"’)V,,""‘(p,")}2’"%’=’Z""‘l is an orthonormal basis in ¥;(p? o pf), by Eq. (3.64). If p? o p?
is an element of .# 7, ,, we obtain an orthonormal basis of intertwiners in ¥;(p” o p?),
by multiplying the orthonormal bases {V/7(p?)}2%, {V;¥(p9)}3%: of ¥i(p?), and

¥ (0", Tespectively, where pP e M}, p? e M} . The explicit choice of the operators
Vou(pP), Vi(p?) is given in Sec. 3.1, Egs. (3.30)—(3.36). The local product structure of

N e # =1, 11 is then given by
‘/Vpiq - ‘/”;fxa x CMirca

(3.72)
V(p® 0 p?) = (p? o p2, {<V(pP)Vk(p); V(p? 0 p?)) }Nig:Ne).

It is an easy task to calculate the transition functions of the bundle J,,, ;. If p? 0 p?€

M f, g "ML and p?, p?arelocalized in cones %,, 6,, respectively, then the equation
Vai(p?) Viti(p®) = Z& By(IL Dy Vi (0P) Vir (p%) (3.73)
ny,

defines a transition matrix By (II, I). Clearly

Bu(I1, Dy = 6nBRUL D3, (3.74)

and on each subspace ¥;(p?),, ® ¥,.(p?) of ¥1(p? o p%),, Bip(I1,1) is given by

Bl';cl(llsl) = blm(II’I)®bmk(II’1)s (3'75)
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so that, by Theorem 3.1,

(1®1 if %,, 6, € P(%,)

" m= I @1 if €, € P(Gn.0), b, € P(¥,)

BR(UILI) = 4 ) (3.76)
e @1 if €, € P(%,), 6, € PGyn.0)

| 7T RT i 6, 6 e P, 0))
where %,, €, are the localization cones of p? and p respectively.

4. Statistics and Fusion

In this section, we show that the field bundles J;, g4, Jigxpi> D> 4, k, 1 € L of a product
representation give rise to a set of fusion and statistics matrices which obey properties
analogous to those of the braiding and fusion matrices of conformal field theories [57].

4.1. Statistics

Let p, g € L be two irreducible representations and consider the field bundles J;,,, g,
Ji i Of the product representations p x g and g x p. As shown in Sec. 3, the co-
ordinatization of these bundles requires the choice of a reference cone %,, two auxiliary
cones €., €' and reference morphisms prP, pf localized in %,. Furthermore, ortho-
normal bases {¥;"(p?)}2%, (V™ (of)})%1, (V}"(p9)})% and {V;*(p?)}3¥ determine
orthonormal bases {¥,™(p?) V;"™(p? )}f'ﬁ:?w of ¥i(p? © pf) and {V'"(p Zal P oT
of ¥1(pf o pFk, as well as the local product structure of A%, A%, # = I, 11. If we
choose p? o ple MY, ,, # = I, 11, with p? and p?localized in spacelike separated cones
(this will be denoted by p? | p? or 4, | %, if %, and %, are the localization cones of p?
and p?, respectively), then we see that

(V2 (o) Vik(p?)) g NFe (4.1)

is an orthonormal basis of ¥;(p? o p?),. This follows directly from the fact that
pP o p? = p?o p?(Eq. (2.22)) and because

lepxa qu><p Z qu (4-2)

holds. The change of bases from { V3 (p?) V% (p")}f’,‘;’:’{”f‘“ to (V2 (p)Vi%(p®) )iy fg Nie s
given by a unitary matrix R (], p?, p%, k) € Uc(Nf, ), ie.,

Ver(p?) Vi (p) = Z"R#(L PP, % K Ve (0 Vik (p7) (4.3)

7

is satisfied.
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~—e
AN

€q

€q

Fig. 4.1.

Lemma 4.1. Let p? € M} and p? € M} be two morphisms with spacelike separated
localization cones €, and €,, # = I, 11. Then the matrices R, (l, p?, p?, k) introduced
in Eq. (4.3) only depend on the classes M ¥, M & and on the relative asymptotic directions
of p¥, p4, that is

R*(I,p,q, k) ifas, p? > as, p*
R, p?, p%, k)=1<__ : 4.4
Abp? e {R (Lp. g, k) ifasyp? <as,pe. @9
O
Remark 4.2. We may rewrite Eq. (4.3) as follows:
VM (oP) Vi (p®) = 26 RE(l, p, g, kg V" (p) V5 (") 4.5)
ny,

for as p? 2 as p?. Unless necessary, we will suppress the index # specifying in which
coordinate system the bases of ¥;(p” o p?),, ¥;(p? o p”), are chosen (see Eq. (4.5)). [J

Proof. The proof of Eq. (4.4) uses an argument invented in [17] and is essentially
identical to the one given in [23]. Let p?, p%, p?, p4 be localized in %, €, (gp, @q,
respectively, p? = p?, p? = p?,so0 that 6, U €, = 6,, €, U 6, < €, hold, for two space-
like cones @p, @q satisfying @p I ‘2,, and @p, @I %* + y, for some y e M3 (see Fig. 4.1).

Then we show that R (I, p?, p? k)32 is constant under the change p? — p?, p? — p4.
Repeated iteration of the preceding argument shows that

R#(l’ ppa Pq, k):ln):’ﬁ = Ri(l’ D- ,q7 k):myaaﬁ (46)
for as, p? 2 as, p?, respectively. Next, we check that
RE(, p, g, K = Riz(, p, 4, Ky 4.7)

by choosing p?, p?in 4L . #"!

pxa »xq appropriately. This will complete the proof of
Lemma 4.1.
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Equation (4.3) implies that the matrix elements of R (l, p?, p?, k) are given by the
scalar product

Ry, 0%, pf, Kig = V5 (p)Vig(pP); Vig(pP) Vi (p®))
= Vs (0P Vi (p)* ViR (p?) Vi (p?). (4.8)
The right hand side of Eq. (4.8) is a well-defined operator intertwining the representa-
tion k of the auxiliary algebra #7* with itself, # = I, I1I. Let I,, I, be two unitary
operators satisfying
pYAT, = T07(4), P, = T,p%(4) 49)

and

vimpry = (T, Vimp?),  Vik(pT) = m(T) Vi (p?)

4.10
V(09 = IT) V0%, Vig(p®) = n(T,) V35 (p?). o
The localization properties of the morphisms imply that
pUly) =T, 0?0 =T,
@.11)
ff =1,
Let us now compute R (I, p?, p%, k)uly
Ry, 0%, 0%, ks = Vig(DP)* VR (D Vig (6P V5% (59
= Vi (oPyn(E Vi (0 EH T, ) Vig(o”)
x m(E) V™ (p?) (4.12)
by (4.10). Using the intertwining properties we may rewrite (4.12) as
Ry (L, 07, 0, Ky = Vis(o")* Vis(p®* I(p* (BT
x (o @))Vig (") Vis(p?). (4.13)
But (4.11) and (4.8) imply that
Ry (5%, 0% Ky = Ryl p”, 0 ko - (4.14)

This completes the first part of the proof. The second part is'an immediate consequence
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of Eq. (3.76). Since
R, (L, pP, p% K)ids = KV (0 Vi (p?) Vaz (0P Vi (pD)), (4.15)

# = I, 11, we may express R,(l, p?, p%, k)pi% in terms of R, (I, p?, p?, k)wp:

Ry (0, pP, p% k% = KVin(p) Vi (p™); Vin(pP) Vi (p®))
= (BR (L DVE(p?)Vi(pP), BRI DV (o) Vik(p?)), (4.16)

where Bji(11,1) are the transition matrices of J,,, and Bx(I1,1) the ones of Jigxpi-
Taking advantage of the fact that they reduce to phase factors (see Eq. (3.76)), we may
write

Ry, (1, p?, p%, k) = BR(ILI*BR(IL 1) R,(L, p®, p*, kYitly. 4.17)

maf

Using Eq. (3.76) in the two situations shown in Fig. 4.2,

el
1 a
€q V
€
Y- Cq _— Cp
/\ \ €r \
/\ €r
I
e, B%
@) (b)
Fig. 4.2.
we find that
R{ (I py g, Wiy = R p, 4, K)o (4.18)
(see Fig. 4.2(a)) and
Ry, p, g, K)is = Ryl p, 4 k)ulas (4.19)
(see Fig. 4.2(b)). This completes the proof of the lemma. |

In the next subsection, we will make further use of Eq. (4.17) to derive an identity
between the R* and R~ matrices.
Next we relate our formalism to the one of Doplicher, Haag, and Roberts [17].
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Lemma 4.3. There exist two unitary operators e}, ,, in the algebras %, # = 1,11
which intertwine the representations p? o p? and p? o p®? of the observable algebra of
such that

ez, p)Va"(PP) V™ (p?) = Zo R*(, p, g, K)uis V;"(p) V5™ (p"). (4.20)

nv,

The statistics matrices R*(l, p, g, k)}J; are obtained by expressing l(e%, ,q) in specific

bases of ¥(p* o p) and ¥i(p? o pF):
R*(L, p, g, k)ilis = Vi (0P Y V" (0 * ez, pa) Va™(0P) V™ (0%) (4.21)

and conversely, one recovers the statistics operators l(e}, ,¢) from

Ueso pe) = Za RE(l, p, ¢, Ky V (0 )V (0P )V (o V™ (p?)*.  (422)
Komea B 0

Proof. The proof consists in a reconstruction of the statistics operators, as origin-
ally proposed by Doplicher, Haag and Roberts in [17]. For p? o p?e .#}, ,, choose
two spacelike separated morphisms p?, p? such that p? o p? € 47, and intertwiners
fp, fq e #* satisfying Eq. (4.9), (4.10), # = I or II. Then

Vam(oP) V(o) = HpP )T V(0P Vik(p9). (4.23)
Since 7 and p* are spacelike separated, we may apply Lemma 4.1, i.e,,

Vim(p?)V(p%) = HpP(T)T*) Y RE(, p, g, RS VI(p) V(PP (4.24)

"y,

where the + sign depends on whether as §” 2 as 7 holds. We use Eq. (4.10) again to
return to the original intertwiners:

Vim(pP) Vi (p) = W pP(E1 T, p%(T,))

x Y, R, p, q, DBV (P Vi*(p?). (4.25)

n,y,o

This may be rewritten as
{p THTFE,pP T Vim(pP) Vi (o)

= Y R, p, g, KRG V" (p) V3 (p?). (4.26)

n,y,0

We define the statistics operators by the equation



Rev. Math. Phys. 1990.02:251-353. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 03/02/15. For persona use only.

BRAID STATISTICS IN LOCAL QUANTUM THEORY 281

pUTHIHT,p7(T,) = et (4.27)

PP, p?>

where the 1 sign depends again on whether as p” 2 as p?. Hence, we may rewrite Eq.
(4.26) as

ez, pa) V™ (PP) V™ (p?) = Za RE(L, p, g, k)i V" (p) V5™ (p?) (4.28)

B,

which is (4.20). Equations (4.21) and (4.22) are merely a rewriting of (4.20) and are easily
obtained by using the orthogonality and completeness relations for the bases of

VPP © pOhs Yi(p? 0 pPh u
Our discussion is summarized in the following theorem.

Theorem 4.4. The mappings

p"OpqE./{f;q—»p"Op"EJ{("

qxp

(4.29)
Verip?op®)— s, pa)V € ¥ilp? 0 pP)y
define two bijections
RE g = Jigup (4.30)
which preserve the fibres of J;,, . Their inverses,
qu:p:‘]qupk_)']lpqu (431)
are given by
plo p’e J/{q@;p_,pp ople J/{fiq
4.32)

Ve ¥i(p?o p?) = leg, ,0)V € ¥i(p? 0 p%),.

09, pP

Furthermore, if we choose local coordinates for the bundles J,,, o and J,, . i, as specified
above, the isomorphisms R}, are determined by the matrices R*(l, p, q, k) € Uc(NF ).

O
The relation

R}, oRE = iy, (4.33)

will be proven in the next subsection.

Finally, we remark that the R*-matrix elements depend on the choice of the
orthonormal bases in ¥(pF ), ¥ (PP ¥1(p7), and ¥,(p?), (see Eq. (4.5)). If we apply
the unitary “gauge” transformations
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U(ls D, m) = (U(l’ D, m)g) € UC(M':)
U(m, q, k) = (U(ms q, k)g) € UC(Nr':tq)
(4.34)
U(l’ q, n) = (U(l9 9, n)%) € UC(M';)
U(n, pa k) = (U(na Ds k)%) € UC(N:p

on these four vector spaces then the R*-matrices transform as follows: R* — R, where
R¢ is given by

RE(, p, g, K)es = U(,q,m) U(n,p, k)3R(, p, g, k)22
mafp wfs Y f:]

x U(l,p,mzU(m, g, k). (4.35)

4.2. Properties of the statistics matrices

In this subsection we derive some basic properties of the statistics matrices. The
following graphical notation is convenient.

k
N
/\ < R*(,p,q, )} (4.36)
p

q
k
/l\ < R™(,p.q, j) (4.37)
p q

In Egs. (4.36), (4.37) we have dropped the Greek multiplicity indices a, f, y, é of the
R-matrices; the complete notation would be

Y 3

k
X —R*(,p,q, )% (4.38)

P.a q,8

Equations between R-matrices may be written, in this notation, by composing the
diagrams introduced above. Composition is defined by contracting strings in the
following way: we read the complete diagram from bottom to top; Greek indices at
the tips of contracted strings and Latin indices enclosed by strings in bounded regions
are to be summed over. The latter sums will usually be written explicitly in this section.
The simplest equation between R* and R~ is obtained by iterating Eq. (4.5):
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l;’ R*(j,p, 4, K)23R™ (), 4, p, K)5" = 03207 . (4.39)
Of course, unitarity of the R* matrices combined with this equation, implies that

R™(j,q,p. 055" = R*(j,p, 4, K)oy - (4.40)

Graphically, Eq. (4.39) is given by

ik 4.41)
q
where we used the following additional notation:
jliet] o (4.42)
C P
or equivalently,
8, mv=1,...N,;. (4.43)

p.p

To derive Eq. (4.39), one considers two spacelike separated morphisms p?, p? with
as p” > as p? and permutes the order of the factors in ¥,;™(p?)V;™(p?) twice, each time
using Eq. (4.5).

In the same way, by considering three spacelike separated morphisms p?, p?, p” such
that as p? > as p? > as p" and permuting the order of

VPV Mot VH (") (4.44)
to
V"o Vim(p) V(") (4.45)

in two distinct ways, we obtain

@H gL
i\e q =3 {1 ! (4.46)
q
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Further related identities follow by considering a different ordering of the asymptotic
directions of p?, p?, p". The Eqs. (4.46) are homogeneous cubic equations in the
matrices R*. They represent the sos-form of the Yang-Baxter equations in the special
case where the spectral parameter has only two values, + and —. The original
derivation of (4.46) from (4.44) and (4.45) may be found in [26].

From Eq. (4.46) and
km
iV kN
i) "]
P q r s

we conclude that the matrices (R*(j,p, g, k)f,,) generate a unitary representation of the
groupoid B; of coloured braids on n strands (see Sec. 6). It is easy, albeit somewhat
lengthy, to check that Eq. (4.46) and (4.47) are equivalent to

4.47)

P 9 r s

JEge P ere Ve pa) = J(PT(E}p pa)E o, yr PP (E S, o)) (4.48)
and

j(Pq ° pp(s:',ps)a;P,pq) = j(G;P,pqpp ° pq(f‘:;',pl)) (4.49)

in the algebraic formalism; see [22, 23].
Next, we derive a basic relation between R and R™.

Lemma 4.5. The matrix elements R(l, p, q, k)} satisfy the identity

R*(l, p, g, k) = e*™e+s=ss0R~(] p, g, k)}. (4.50)
O

This identity is a well-known identity in conformal field theory [49] if one reinterprets
s; as the conformal dimension of a representation j of some chiral algebra .«/. The proof
follows from Egs. (4.17) and (3.76) by analyzing the situation shown in Fig. 4.3 below.
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More details are contained in [24].
A consequence of Eq. (4.50) is that if all representations j € L have integer spin, i€,

s; = 0 (mod Z), forall je L
then
R*(i,p,q,k); = R™(i,p, 4, k); 4.51)
holds for arbitrary i, p, q, k, j and [ in L. In this case, Egs. (4.46) and (4.47) imply that

the matrices (R(, p, g, k)}) define representations of the permutation groups S,, of n

elements. Hence, in a theory inj which all representations have integer spin, the statistics
of the intertwiners {¥,%(p?)}2x reduces to the ordinary permutation group statistics,

as analyzed by Doplicher, Haag and Roberts in [17].

Lemma 4.6. The following equations hold.

() R*(j,p,q, gt = 6¢8;0,6{ R*(j, p,q, )i (4.52)
(i) R*(1,p,q, )ik = 0F 0,8, 61R*(1,p,q, 335 (4.53)

Furthermore, it is always possible to choose coordinates on the bundles Jig, Ji5;, Ji5m and
Jmgj SO that

(i) R™(1,3,D, ¥pe = R*(j,p. 0 iy - (4.54)
(]

Equations (4.52) and (4.53) follow from the fact that the intertwiner spaces Y1007,
¥,(p?), are one-dimensional and the proof of Eq. (4.54) will be given in Sec. 5. Lemma
4.6 permits us to derive a connection between spin and statistics of sectors. The proof
of this connection only uses Eq. (4.50) and Lemma 4.6 (iii), but does not require Lorentz
covariance of the theory. It may therefore be valid in certain non-relativistic theories
as well.

In order to derive our connection between spin and statistics, we first note that, by
parts (i) and (ii) of Lemma 4.6, the only non-vanishing elements of the matrices
(R*(1, p, p, 1)72f) are R*(1, p, p, 1)21}. By (iii) and since p = p,

R™(Lp,p, D51 = R*(L,p, 5, 1)1 . (4.55)

Taking into account the fact that the matrix (R*(1,p,p, 1)2}1) is unitary, we may
introduce the following notation:

R*(1,p,p, Dj1i = &*™r 7 (4.56)
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and by (4.55)
R™(1,p,p, 1)B}] = e "%7. .57

Equation (4.39) means that
0, ;=05 ,(mod Z). (4.58)

Next, we apply the fundamental relation (4.50) to conclude that
e2ni0p‘5 = e2ni(s‘,+sl—;)e— 27i0p, 5 , (459)

where we have used that s, = 0 (mod Z). Equation (4.59) means that

0,;=

oy

DO e

(s, + 55) (mod%l) ; (4.60)

this is the desired spin-statistics connection. In Sec. 5 we will define the statistics
parameter A, of a sector p € L [17, 18] and show that, for a certain choice of bases in
the intertwiner spaces, 6, ; coincides with the phase of 1,

A, =|A,|e 205, 4.61)
Furthermore, it follows from Eq. (4.59) that if

s, =0, ;(mod Z) (4.62)

then

s; = 8, (mod Z) (4.63)
holds. It will be convenient for later results to assume that Eq. (4.62) and consequently
(4.63) are valid. (Lorentz covariance and an assumption of strict localizability of
charged fields on spacelike strings actually permits us to sharpen our connection

between spin and statistics and prove Eq. (4.62).)

4.3. Fusion of intertwiners

From the decomposition of a product
ixj=PPIw (4.64)

for i, j e L and from the fact that

sx(ixj)=(Exi)xj (4.65)
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holds, we now derive the existence of unitary matrices governing the expansion of
intertwiners V*(p*)Vy™(p’) € J,; xjm in terms of intertwiners V,""(p') € J;,,. Consider
two representations i, j € L, whose product i x j decomposes as in Eq. (4.64). We
assume that a reference cone %,, as well as two auxiliary cones € and €’ have been
chosen such that 4%, .#%; and field bundles can be defined as discussed in the
preceding sections. If p/, p/ and p/ are morphisms belonging to theclassesi, jandl e L,
respectively, and localized in the interior of the cone €,, then Eq. (4.64) implies the
existence of partial isometries T p,vp. (i) in Z(€)™u =1, ... Nj intertwining the
representations p/ o pj of o with p}:

‘o prl(A)r iopl, pl(#) p;,op, pﬁ(”)pr (A) (466)

This set of intertwiners is a complex vector space of dimension Nj; which we de-
note by ¥ (p; o p/; p}). We choose the {T,;.,; (1)} to be an orthonormal basis in
¥(p o pf; p}) with respect to the obvious scalar product If J,i «jm is an intertwiner
bundle of the representation i x j and {¥;*(p})V™(p; )} i "1 an orthonormal basis of
the fibre #,(p! o p{),., then the decomposition (4.64) along w1th

N = Z (4.67)

implies that
{D(Csopt, W)V (01} N 25 < 470} © p))m (4.68)

forms an orthonormal basis of ¥,(p! o p/),. Hence there are unitary matrices
F(n,i, j,m) such that

Ve VEm(pd) = Z Fni, j,m)an(Tsopn (1) Vi™(0}). (4.69)

Expansion (4.69) is called fusion, the matrices F(n, i, j, m) are called fusion matrices. We
now show how to compute the fusion matrices F in terms of the statistics matrices.
Let us start with the special case of fusion on the vacuum sector. We consider the
field bundle Jy;,;, of the product representation i x j and pick the fibre ¥3(p/ o p/),
over the reference morphism p/; o p/. The usual orthonormal basis of ¥3(p, o p), is

(VI VI (pd)Ne (4.70)
whereas

(T, ot )V (0D} 4.71)

is the analogue of (4.68) in this simple case. Clearly, N % = N},. By performing a unitary
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“gauge” transformation in the intertwiner space ¥ (p; o p/; p}) (see Eqs. (4.34) and
(4.35)), we can redefine the intertwiners I';,,; i(#) so that

VOV I OIS T ot (W) V(01> = By 4.72)

holds. From now on, we assume that the intertwiners {I,;.,; ()} in 7" (pio p,,, oh
are normalized as in (4.72). We generalize this fusion identity to arbitrary pio p/e
ME;, pte M, # = I, 11 by moving an intertwiner V,/(p")V}!(p’) back to the fibre
¥i(p} o p), before fusing.

V(YW (7)) = W p'(TE 0T, Ve Vit (e))

Up' CE DTt iyt W)V (0))
= (P T )T ot Totopt. (L) Vi (01) (4.73)
where the unitaries I'f;, [’} o and I'Y; have been defined in Sec. 3.1. If we set

T opr, i) = P2, Dot (W (474)
# =1, 11, we can rewrite the fusion identity (4.73) in compact form:

VA oWINe) = (T s ) Vi 0Y),  # =L IL 4.75)

If & is any simple domain containing the localization cones of pf, p/ and p' in its
interior, it follows that I}, ; ,(u) € o(¥)™".

piopi,
After these preliminaries, we are ready to state our main result on fusion.

Theorem 4.7. Let i, j € L be two irreducible representations of s/ which satisfy

N
=@ PIw. (4.76)

lel p=1
If p*, p’, p' are morphisms belonging to M}, M} and M} respectively, # = I, 11, then

there exist unitary matrices (F(n, i, j, m)’%), depending only on the representations m, i,
j, n, 1 and k, such that

VW) = T Fni . mign(C e 1 0)Vir (o) (4.77)
Ly,
holds, # = I,11. The fusion matrices (F(n,i, j, m)l%) satisfy the normalization condition
F(a,b,c,1)[1} = 5165648} 87 (4.78)

and can be explicitly computed in terms of the R*-matrices. O
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Dropping the index #, we may rewrite (4.77) as
VS (p ) Vgm(p?) = IZ" F(n,i, j, min(Tyiop, (1) V™ (p"). (4.79)
> ¥,

Proof. We first note that the definition of fusion on the vacuum sector, Eq. (4.75),
is equivalent to the normalization condition (4.78). Let us assume for the moment that
p' and p’ are spacelike separated. The proof of validity of the general fusion identity,
Eq. (4.77), will be reduced to the special case of fusion on the vacuum sector. This
requires the introduction of an auxiliary morphism p™ € .# localized in a cone %;
such that if & is a simple domain containing the localization cones of p', p’ and p',
spacelike to € + x, for some x € M3, then % | %, holds. Clearly two possibilities
may occur (see Fig. 4.4):

(a) (b}
Fig. 4.4

so that either as, p™ < as, p’, p/ and p' (Fig. 4.4(a)) or as, p™ > as,, p', p/ and p' hold
(Fig. 4.4(b)). We shall study the first case: the construction of the fusion matrices will
be shown to be independent of this choice. Let V! (p™) be the isometry, unique up to
a phase, belonging to ¥,,(p™),. We multiply V" (p*) V{5 (p’) by V3! (p™) and then apply
Eq. (4.5) twice:

V(oW (Vi (p™) = X R (k, j,m, D Vs ()Y Vi (0™ VE (p)
Y

= R*(m,i,m, j)y R™ (k, j,m, 1)
44 i3

Lu,v,y
x V(o™ VL (p Vi (o)) (4.80)

so that it is now possible to use Eq. (4.75):
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n"z(p>nk$(pf)vm1(pM)— z R*(n, i, j)l R* (k, j, m, )i,

V(0T s ) V(0. (4.81)

The intertwining property of V,,"T(pi‘) and the localization properties of p™ and of
I'%, s +(v) imply that

‘/“ﬂ;(pm)l( piopd, p’(v)) - n( plopd, p’(v)) I/pn;é(pm) (4'82)
Plugging (4.82) into (4.81) and performing an additional permutation, we find

VA VER eV (o™ = Y R*(ni,m, IR (k, j, 7 1),

Lu,v,y
X 1Ty ) Vb (0™ VI (0")

= Y R (nmL ORI R (ni,m, j)iyR* k. j, 7, iy

Lu,v,7,8
X 1T o, M) Vi (0 Vi (p™) (4.83)
so that, defining
F(n,i, jym)y =Y R™(n,m,], D72 R* (n,i, m, IR (k, j,m, DIy, (4.84)
",y
we have that
Vi (oYW (pyVit(p™) = Z F(n,i, j,mesn(Th. 0 1(v))
x Vig(p Vit (p™). (4.85)
Since 7,,(p™), is one-dimensional,

V(o) Vim(pd) = Z F(n,i, j,mpen(Th, 5 o)) V(0"

holds. This is (4.77). Had we chosen as, p™ > as, p', p/, p' instead of as, p™ <

as, p', p’, p', then the definition of F(n, i, j, m)i5, would have been

FA(ns is j, m);c‘:’ﬂ - Z R+(n’ '—'—l’ l’ 1)'7'::’11 R—(n’ is "_1’ ._]_)Z:;R—(k’ j9 rﬁ, 1)2}311 . (486)
"y

It is easy to verify that (4.84) and (4.86) coincide, using the fundamental identity (4.50).
Finally, if p’ and p/ are not spacelike separated, choose p‘ € .# ¥, unitarily equivalent
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to p' and spacelike separated from p’. Then
Vik(p )Y Van(p?) = n(Ch o TRV (P) Vin(p”) (4.87)

holds. We may now apply the previous arguments to the right hand side of (4.87).
Using once more the definition (4.74) of T’ ;. (1) one obtains again Eq. (4.77). This
completes the proof of Theorem 4.7. [ |

The fusion matrices can be neatly incorporated in the graphical formalism, described
in Sec. 4.2 for the R*-matrices, by introducing the following notation:

(%]

i i = F(i,p.q. 0075 (4.88)
i
p,a q,8
As usual, when reading equations in graphical notation, Greek indices at the tips of
identified strings are to be summed over. Sums over Latin indices enclosed in bounded
regions will be explicitly indicated, as well as sums over the Greek index y associated
to the vertex of the fusion diagram (4.88).

As in conformal field theory [41, 42, 43, 49] one easily derives the following
“polynomial equations” [41, 42, 43, 49] in the present context:

fm/
i F’A’?' K (4.89)
t p g

oM

,:\ B
¥R
~\_3

and similarly,

| m

§ = il (4.90)
1|k

t p q
r r
m \n
z i K = i K
" o N 4.91)
N
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In Egs. (4.89)-(4.91) we omit Greek indices associated with the tips of strings.

Since the fusion matrices F(m,i, j,n) = (F(m, i, j,n)i’%) provide a unitary transforma-
tion between orthonormal bases of ¥,(p o p/),, they are of course invertible. This
means that there exist matrices (F(n, i, j, m}¢%£) such that

. Zﬂ, Fini, j,m)2% g F(n,i, j,mE 5 Y = 616780 (4.92)
and
Y Fni, j,m)ig? F(n,i, j,mpys = 6F 6% 6§ (4.93)
17,8

hold. The matrices F arise in the following identities:

(T yiops, o (7)) V5 (p") = ,ZW F(n,i, j,mf 3 £ VI (p)Y V™ (0)) (4.94)

k'ya',
and just as for the R*-matrices, unitarity means that
F(n,i, j,m)53 = F(n,i, j,m)s. (4.95)

The normalization condition (4.78) for the fusion identities on the vacuum sector and
Eg. (4.95) imply that F(a, b, c, 1)/2] satisfies

F(a,b,c, )23 = 62815} 625] . (4.96)

In analogy with (4.88) we introduce the following graphical notation for the matrices
E(n,i, j,m):

i1a| j!B.
o F(n,i, jymk g (4.97)
I, &

The F-matrices obviously obey polynomial equations analogous to {(4.89)—(4.91).
Using the graphical notation (4.88), (4.97), Egs. (4.92) and (4.93) may be rewritten as

m (4.98)
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and

m (4.99)

where we used Eq. (4.43).
Defining the projections P*?(n, i, j, m) = (P“?(n, i, j, m5") by

e im
kl

PO, i, jympfg =n [l m
k
ia |8

= 2‘; (n l’]am)kuﬁF(n l .”m)lyé (4100)

it is easy to check that Egs. (4.98) and (4.99) imply orthogonality and completeness
relations for these projections:

P(I‘Y)(n, i, j9 m)P“’,yl)(n, i’ j’ m) = 5”‘6)’}”})“,?)('1’ i’ j: m) (4'101)

xz PEI(n,i, j,m) = 1enm . (4.102)
I

From Egs. (4.79) and (4.94) one also infers that the complex numbers P (n, i, j, micg
are the matrix elements of the projections n(L%.,; (y) T2, (), # =1, II acting
on the Hilbert space #, with respect to the orthonormal basis V*(p*)V;™(p’) of
¥,(p' o p’),, or, equivalently,

n(rp‘Opj,p‘(y)rp,‘:opf,p’(y)) l/ank(pi) I/ﬂkm(pj)

= 5 P, j,mEVI (0 VE (). (4.103)

k', p.m

These projections are analyzed in detail in Secs. § and 6. Here we merely wish to remark
that

P i, j, i = 030005 8566167, (4.104)

an equation which will be useful later on and which follows from (4.78) and (4.96).
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Next, we introduce the monodromy matrices

MG,p,q. b5 = Y R*(,p.q, k)5 R* (g, p, ke, - (4.105)

nu,v
They have the graphical representation

Py q,8
(l
i P k o M(i, p, g, k)23 (4.106)
i

P, G,p

Following [24, 43], we prove the following theorem.

Theorem 4.8. The monodromy and fusion matrices of an algebraic field theory satisfy
the equation

,;6 M, p.q, K25 F (i p, g, KNty = e2™Co**a~F (i, p, g, k)jsy . (4.107)
If s; = s;, Eq. (4.63) holds for all sectors j € L we may rewrite (Eq. 4.107) as

IZJ M, p,q, K F i, p, g, KI5 = e2™r s~ F (i, p, q, K)jly . (4.108)
s Ys
O

Proof. Let us temporarily assume that

r,d -]
=Y R*(7,p,q,1)2} 4.109)
% i l\]k 2\; ¢ Vot ilk
i
p,.a q,8 p.a q,8

as well as a similar equation for R~ hold. Iterating (4.109), we find that

r98 r,S

L _ + aul
s i (o k_;vR (F,q,p,l)g‘:ll n{k (4.110)
i)

1,n
i

p,a E{,B p,a q,8
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r,d
+ gl p+ 1 Pvl k 4.111
= Z R (F3qsp’ l)ple (_ D.q, )qnl . . ( . )
v, i
p,a 4,8
Since, by (4.50)
R+(I_', p.q, l)g'\”ll = e2ni(si+sa—s?)R—(F’ p.4q, l)qu'\”ll (41 12)
holds, where we have used that s; = 0 mod Z, and by (4.39)
Y. R*(.q,p, VB R (7, p,g, )] = O (4.113)
we can rewrite (4.111) as
r,3 r,d
L — eZni(s;+s5—s;) (41 14)
z i(n)k i k
t,n .
i j
p,a q,8 P,a q,8

and this is (4.107). It remains to check identity (4.109). But (4.109) is equivalent to

1,8 ' r,s 1
s i OO« =Y R*(,p.q, D24} | k| (4.115)
l . v ,
A j
Pia QB k1 P,a 4,8 ki

and using the polynomial equation (4.90) and equations of Sec. 4.2, we obtain
& \

T Ry REpg i T @t

qvl
v, 8,1t 1
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so that it is sufficient to check (4.109) in the case of fusion on the vacuum sector. That s,

r r
s O =Y R*Fpq, DB @.117)
r ~ 1 v T ~ 1
[ q] 3
P.a gq,! p.a g,

The left hand side of this equation reads
L R.p.q. DE F(oa.p i
o1

=Y R*(,p,q DI F(F,q,p, 1)} (4.118)
n

where we have used Lemma 4.6. The normalization (4.78) implies that

F(,q,p, 1) = 8! 4.119)

pnl

and, plugging (4.119) into (4.118), we find that

Y R*(F,p,q, )1 F(r,q,p, 154 = R*(F, p,q, )24, . (4.120)

Lng

The calculation of the right hand side of (4.117) is just as easy:

Z R+(F,P, q, l)gcllFA(F,ps q, 1 :7;11 = R+(F’p’ 4, 1)5:11 (4.121)
v

using again (4.119). Since (4.120) and (4.121) coincide, this completes the proof of the
theorem. |

In the proof of Theorem 4.8 we have shown that the following lemma holds.

Lemma 4.9.

;R+(§,p,q,1)§,‘,’} i L= | @.122)

k )

p.a q,8 p,a q,8
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Qu P G P

= m
Y R*Gp.q, DY) ,~ ™= \ - (4.123)
p

The proof of Eq. (4.123) goes along the same lines as the proof of (4.122).

4.4. Spin spectrum and statistics of an algebraic field theory, spin addition rules

Theorem 4.8 allows us to carry over, to the present context, a series of basic results
originally proven for conformal field theories; (see [43] and references therein). Two
immediate consequences of Eq. (4.108) are that

(i) the fusion matrices (F (i,p,q,k)%y) diagonalize the monodromy matrices
M(i, p, q, k)35

(ii) The spectrum of M(i, p, g, k) is given by

{e21ri(sp+sq—s,.) ‘re L’ N;q # 0} . (4124)

The following theorem has been proven in [43].

Theorem 4.9, Let us consider an algebraic field theory such that there are only
finitely many distinct superselection sectors in L, |L| < co. Then all the spins s;, j€ L,
are rational numbers. O

In analogy with the terminology used for conformal field theories [44], algebraic
field theories with only finitely many distinct superselection sectors, | L| < oo, are called
rational theories.

Let us recall from Sec. 4.2 that the statistics occurring in an algebraic field theory is
fully characterized by the set of R*-matrices defined in Eq. (4.3). If R*(i,p, g, k) #
R7(i,p,q,k) then these R*-matrices generate unitary representations of the braid
groups. We then speak of braid statistics. If R*(i, p, q,k) = R™(i, p, q, k) holds for all i,
P, g, k € L then the R-matrices determine unitary representations of the permutation
groups, and the statistics is ordinary permutation statistics. Theorem 4.8 allows us to
characterize the type of statistics encountered in an algebraic field theory (i.e., braid
or permutation statistics) in terms of its spin content and vice-versa.

Definition 4.10.
(i) Let p € L be a superselection sector of an algebraic field theory of spin s,. We
define the spin parity of the sector by the equation:

o, = e (4.125)

4

(i) Let p, g and r € L be superselection sectors satisfying the fusion rule Nj, # 0. We



Rev. Math. Phys. 1990.02:251-353. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 03/02/15. For persona use only.

298 J. FROHLICH and F. GABBIANI

say that spin parity is conserved for the fusion of p and q into r if

6,0, =0, (4.126)

holds.
If (4.126) holds for arbitrary p, q and r in L, with N;, # 0, we say that spin parity is
conserved. O

Theorem 4.11. For an algebraic field theory, the following two properties are
equivalent:

(i) The statistics of the theory is ordinary permutation statistics.

(ii) Spin parity is conserved under fusion.

Furthermore, both properties imply that

1
s,€52, 4.127)

where s, is the spin of the superselection sector p € L. O
Proof. Letusassume that R*(i,p,q,k) = R (i, p,q, k) holds for alli, p,q, k € L. Then

one concludes from Eq. (4.39) that the monodromy matrices are trivial,

M(i, p,q, k)5 = 3/8297, (4.128)

¢/

and hence all their eigenvalues are equal to one,
eZm’(sp+sq—s,.) =1 (4129)

for all p, g and r in L with N}, # 0 (see Eq. (4.124)). This last equation is equivalent to
conservation of spin parity. Conversely, conservation of spin parity implies that all
eigenvalues of the monodromy matrices are trivial, i.e., Eq. (4.128) holds. By Eq. (4.105)
we conclude that

R*(@i,p,q,k) = R (i,p,q,k). (4.130)
To show that (i) and (ii) imply that all spins of the theory are half-integral, let us
consider Eq. (4.129) for the case that g = p and r = 1. By definition of the conjugate

charge we have that N5 # 0. Moreover 5, = §;.
Hence, we conclude from (4.129) that

e*mise = | (4.131)

or
1
5, € 3 (mod 7). (4.132)

This completes the proof of the theorem. |
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In three-dimensional theories with charges localizable in double cones, one easily
sees [17, 22] that ordinary permutation statistics occurs:

R*(i,p,q,k) = R™(i,p,q,k) (4.133)

for alli, p, q, k in L. Hence, by Theorem 4.11, all sectors of such theories have integral
or half-integral spin and spin parity is conserved under fusion.

Next, we analyze theories with abelian braid group statistics, i.e., theories for which
the statistics matrices generate a one-dimensional representation of the braid groups,
for some sector p € L. It has interesting applications in quantum field theory and in
condensed matter physics [58]. Our purpose is to derive a spin addition rule for abelian
sectors which has been conjectured in {45] on the basis of an analysis of anyon models.

As shown in [23] by a straightforward generalization of an argument given in [17,
18], abelian braid group statistics for the sector p € L implies that all morphisms
p? € M} are *-automorphisms of the algebra #*, # = I, I1.In that case, 5 = p~! and
hence p x p = 1 holds. Every power p™" = p x -+ x p (n times), n € Z, of the repre-
sentation p is irreducible and belongs to the list L. The subset L = {p**;n e Z} of L is
invariant under composition and charge conjugation, its fusion rules are described by
a1 ifl=n+m,

Npmpen = {0 otherwise. (4.134)

All intertwiner spaces for representations in L are one-dimensional and Schur’s lemma
implies that

e*™%mn if Nj, Ni, # 0 and Ni Nk, # 0,

4.135
0 otherwise, (4.135)

RE(l,m,n, k); = {

for I, m, n, k, i, jin L and 6., = 6,, = 1. It then follows from Eq. (4.91) (with
g=pt=pr=1Lk=1l=p,j=1i=pand m= 1) that

R*(1,p,p, )ER*(P,p,p,P); = 1 (4.136)
or
e?™05.p. g2%10pp — | (4.137)
By (4.135),
R*(p x p,p,p, 1)} = &>, (4.138)

Furthermore, (4.106) and (4.108) show that

(R*(P x B,p,p, 1)2)? = €™ 5pp) (4.139)
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Combining (4.136)—(4.139) we find

e2mispxp — @27i(25,+205 ) (4.140)
and by (4.62)
o2 MiSpxp = @2Mil4sp) (4.141)
or
Spxp = 45,(mod Z). (4.142)

Iterating these arguments, one finds that

Sy = s, (mod Z). (4.143)
This is the desired spin addition rule for abelian sectors. Similarly,

— YT
In the non-abelian case, analogous spin addition rules can be proven by using (4.62)
and the polynomial equation (4.91), provided the fusion matrices {F (i, m, n, k)j} can be
calculated without using Eq. (4.84) (see [23]). This is the case if, for example, the R*
and F matrices can be derived from the representation theory of some (quasi-)quantum
group via the vertex-sos transformation [43].

5. The Statistics Parameter of a Superselection Sector p c L

In this section, we define a numerical invariant for p e L, called the statistics
parameter of a superselection sector p. The statistics parameter, denoted by 4,, plays
a central role for theories with permutation statistics. Doplicher, Haag and Roberts
[17] showed that 4, is always of the form

d(p)e {1,2,3,...} (5.1

and that representations of the permutation groups arising in this case (see Sec. 6) are
classified up to unitary quasi-equivalence by 4,. The importance of the invariant 4, is
illustrated by a general result of Longo [30] relating it to the index of the inclusion
p(H(€)™") < (€)™, and a substantial portion of the next two sections is devoted to
analyzing its role in the present context.

We start by proving a basic lemma.
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Lemma 5.1. The following graphical equations hold.

p,apz p,az
. 2
j i = (\ i -2
) o/
p
p,a, p,a,
p,az p’az
L . (\ (5.3)
j e i
p’)
P
pta| p’a|
praz' p'°2
. ) (\ i : (5.4)
) U
p/
P
pra1 D,Q‘
p;ap P,z
. o . (\ (59)
i ( ! ) o/
o]
P, a P, @,

a

In this graphical Egs. (5.2)—(5.5) we use several new conventions: the following fusion
matrices

p.a p,B
k

—F(i,p,p,i)%, (5.6)

11
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and
1,1
i i
o F,p,p, iy (5.7)
k
p.a p,B
have been replaced by
P,a p,B F—— 59)
> rLp,pt)iigs .
HON
i i “"
() '~ Fampis. (59)
p.a p,8

This is justified by the fact that the position of a string assigned to the vacuum
representation 1 is irrelevant in a graphical equation if one makes the natural choice
V?2(1) = 14, for all p € L. Sums over Latin indices of bounded regions have also been
suppressed. In terms of braiding and fusion matrices, Eq. (5.2), for example, reads

Y F(,Bp YR (5,0, p, Y22 F (j, B, 2, )i

sB 7172

(i 5 o NS = 528 + R
= BZ F(j,p,p, )i11 F(sy,P,0,51)711 R (s2,p, P, ] :;::z:
S1:P15 71>
52.82,72,
Y374

X F(Sl9ﬁ9p1’sl)slzlﬂlzygﬁ(j’ﬁ,paj)sl|lﬂlly‘6:f' (510)

Proof. We will only prove Eq. (5.2), since the proof of the other equations is
analogous. The polynomial and Yang-Baxter equations imply that

az as

C;j RN C\p (5.11)

p'a’ pra|

holds. We prove Eq. (5.2) in the special case i = 1. By (5.11), it is sufficient to check the
following equality:
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@ a,
j o= g (\ (5.12)
”')
p
P2 P.a

The fusion rules imply that j = p, a; = a, = 1 and the left hand side of (5.12) is

Y F@,p,p. )R (5,0, 0. VI F(5, 5,0, D)14. - (5.13)

$.8.71,72

For the right hand side, we obtain

Y F(L,p,p, 13y F(sy. B, b 5,77 R (55, 0, p, 1)5720

s,B1,71s
$2.82,72,
Y3:Y4
x F(sy,B,p,51)3 88, F(Lp,p, DI, - 1. (5.14)

But F(1,5,p, )yf}" = 630067 and F(1,5,p, 1)1}, = 8285 8, by Egs. (4.78) and
(4.96), so that (5.14) reduces to
Y, F@BERPATR (52,00 DU F (BB PP, (5.15)
52,82,72,73
which is (5.13).
To prove the general case, we note that

as az 1
j \l io= ) i 1 (5.16)
pya| PyQ| _irl

Using the Yang-Baxter and polynomial equations, we obtain

e

az

02.\1

j )i 1= §1 (5.17)

K

p,al -1',1 p,a, T,1

1
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Applying the result (5.12),

a

ap, | azL' 2 !

j ij j1 @1 i |1 (p\) (5.18)
~ . v ,,

p,q T,l p.q, T,I p.a, -i',1

where the second equality follows again from the Yang-Baxter equation. Finally,
applying a last time the Yang-Baxter and polynomial equations, we obtain

D
-~
n
P
—

P P
P,a; T) 1 p,a, i,1
2
= P 5.19
Q) 1)
P
pyal
which completes the proof. |

It should be clear that the new notation introduced in the formulation of Lemma
5.1 considerably simplifies the proof of equations in the graphical formalism: the
Yang-Baxter and polynomial equations imply

/\/\/\ - /\< ) K/\/ (5.20)

-~ ~
(5.21)

~~
i
n
S’

~— —
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\E/\ . \/\E\ (5.22)
\\X\/= \\/\/ e (5:23)

Equations (5.20) and (5.21) mean that our graphical equations are invariant under
Reidemeister moves of type II, just as the usual diagrams for knots and links [54].
Equations of the type (5.22) and (5.23) correspond to invariance under Reidemeister
moves of type III. The transformation properties under Reidemeister moves of type 1
are described by Lemmas 4.9 and 5.1.

=R*Lp, 5 8L (),

and

© o
©
Ot ot

(5.25)

1
J ”

= R_(la p-’p’ 1)511 u

These facts were first noticed in the context of conformal field theories [55] and were
employed to construct invariants for knots and links generalizing Jones’ invariant [56].
They will also lead to link invariants in the present context [24].

We now apply Egs. (5.20)—(5.25) to compute

-
—-—

1 = Q=R+1 p, 1)2
(p\p) z D/CZ (L,p,p,1);
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= R*(1,p, 5, D2H1R(1,p,p, )34 m
p p
= m = R*(p,p,p, P)}i1- (5.26)
p P

Definition 5.2. The complex number R* (P, p, p, p): 11 is called the statistics parameter

of the sector p and we write

4, = R*(3,p, p, Pi11- (5.27)
O

From Eq. (4.40) it follows that
1, = R°(3,p,p, P11} (5.28)

Remark 5.3. R*(p,p,p,p)i1} is a matrix element of the statistics operator p(e,», ,»),
because, by Eq. (4.21),

R*(p,p,p,p)111 = VP (pP)V ' H(pP); B(egs, ) VP (PP)V P (0P)) . (5.29)

Applying a unitary “gauge” transformation of the type (4.34) in the one-dimensional
spaces ¥5(p?)y, ¥1(p"),,

VP (pP) = e®1 V7! (p?),
(5.30)
VIP(pP) - &2y 17(p?)

one checks, using Eq. (4.35), that the matrix element R*(p, p, p, p)11} is invariant under

this gauge transformation. ad
Lemma 54.

R*(5,p,p.P)i1} = F(P,p, 5, P)I IR (L,p, 5 1)1 - (5.31)

(1}

Proof. Equation (5.31) is an immediate consequence of the definition of fusion
matrices, Eq. (4.84):

F(B,p,p.0)i}t =Y R(p,p, L, D2\ R* (B0, 2, )14, R (LB, P, DR (5.32)

H, Y

since
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R*(1,p,p, D31y = R*(L, 5, p, 1)51: 8 (5.33)

holds and moreover the equations

VP (pP)V1i(1) = R™(B,p, 1, DI VPP ()Y (pP), (5.34)
V) =1, V(1) =1|,, (5.35)

imply that
R (B, p,1,1)3) = 8162, (5.36)

we obtain
F(@,p.p,p)ii1 = R* (B2, DR (LB, P, Vi1 (5.37)
which is (5.31). [ |

By definition of the conjugate sector, the representation p x p x p contains the
representation pe L at least once as a subrepresentation, so that the constant
F(p,p,p,p)i1! is non-vanishing.

Lemma 5.5.
PP(T o5, 1) 550pr.1 = F(B,p, 5, P)i 11 1 ., (5.38)
pp(r;%OpP,l)eroF,l = FA(ps Ij, p’ P)Hi 1”.)?’, . (539)
O

Proof. We prove only Eq. (5.38). Equation (5.39) follows by exchanging p and p.
The irreducibility of the representation p? of o/ on the vacuum sector and the fact that

PP oez5,1) Fopope,1 € PP(AY (5.40)

imply that
PP ezm, ) 50pr1 = 1 U p, (5.41)

forsome y € C. To evaluate this constant, we consider the action of p?(I% .55, 1) Fspope. 1
on the one-dimensional intertwiner space ¥ ( /7’)5:

PP o5, 0 00,1 V(D7) = pP(T e, OV P (pP) VP! (p7)V *P(p?)
= VP (pP)p(T o) VP (PP)V P(pP),  (542)

where the first equality follows from Eq. (4.75) and the second from the intertwining
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properties of V!7(pP), since

VP (pP)VP(pP) = zﬂ F®,p, 5, D) P(Torozm, (@) VAZ(p") (5.43)
k,a,
we obtain
Tk .55.1) VP (p?)V%(pP) = F(p,p, b, P} 11 (5.44)

Inserting (5.44) into (5.42) we see that

w=F@p,Bp- (5.45)

|

Our next goal is to show that the constants F(p,p,p,5)iL! and F(p,p,p,p)it}
occuring in Egs. (5.38) and (5.39) may be chosen to be simultaneously positive by an
adequate normalization of the orthonormal bases in the intertwiner spaces ¥,(p*),,
¥,(p");, 71 (p?); and ¥5(pP),. This will identify F(p, p, B, 5)i 1 with the absolute value
of the statistics parameter and shown that |4,| = | 4;] holds. The proof of those results
require some preliminary computations. The next lemma determines the transfor-
mation properties of F(p, p, p, 7)1 ! under a unitary “gauge” transformation of the type

(4.34).

Lemma 5.6. Let VP!(p?), V'?(pP), V?'(p?) and V'?(p?) be (ortho-)normal vectors
in the one-dimensional spaces ‘Vp(;ﬁ‘)l, Y1(p%)ps ¥ 5(pF), and 1/1(;7’)5. If we perform
the unitary “gauge” transformations:

VPi(pP) = ety Pl (p?) = VP! (pP)

V1P(pP) — ei02V 1P(pP) =: V17(p?)
(5.46)
VPl(pP?) — ei*sV P (pP) =: PP1(pP)

VIR(pP) = el F(pP) = V()

in the intertwiner spaces ¥,(p?);, ¥1(p®),, ¥3(p?); and ¥;(p*), then the new fusion

matrix elements F(p,p,p,p)!!!, F(p,p,p,p)!'} computed with respect to the new

(ortho-)normal bases V?!(p?), V'?(p?), V?'(p?) and V'?(p?) are related to the old
matrix elements F(p, p, p, p)i11, F(p. P, p,p)il1 by

F(p,p,p,p)i11 = el@1+02-03-00F(p, b, p, p)i11 (547)
F(p,p,p,p)ii} = e i@rte2mes=edf(5, p b p)i11. (5.48)

a
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Proof. By Lemma 5.4 we know that

F(p,p,p,P)!1! = R*(B,p, p,P)} IR (1,5, p, 1)311 (5.49)
and
F(p,p,p.,p)1}t = R*(p, B, B, F)} 1R (1,p, B, 1)211 - (5.50)

Since the matrix elements R*(p, p, p, p)i 11 and R*(p, p, P, p)i1} are invariant under the

“gauge” transformations (5.46), it suffices to prove that the new matrix elements
RQ,p,p, 1)5}} and R*(1,p, P, 1)21] are related to the old ones by

§+(l,ﬁ,p, l)gii — e—i(¢1+¢z‘¢3“¢4)R+(1,ﬁ, P, l)gii ,
~ . (5.51)
R+(1,p, P, 1):11 — ei(¢1+¢2“¢3‘¢’4)R+(1’p’ B, 1);’11 .

But, by Eq. (4.21),
R*(L,B,p, D11 = <V (pP)VP (0P 635 ,, VI (pP) VP (7))

] (5.52)
R*(L,p, 5, 1511 = KVI2(pP) VP (pP); 640 55V 12 (pP) V1 (pP)).

The equations (5.51) follow by comparing (5.52) with the analogous equations for
R*(1,p,5, Dj11, R*(1, B, p, )51} using Eq. (5.46). .
The next lemma will be important.

Lemma 5.7.

F(p,p,p.p)i1t = F(p,p, 5. P)}11. (5.53)

-
-

Proof. We already proved that

pll

ﬁ(ﬁ:p’ﬁ’p—)ii} = R+(§,p9pap)i%iR+(lsﬁ’p9 l)ﬁll

=R (p,p.2, PR (L,p, P, 111 (5.54)
where (5.54) follows by use of (4.40). If suffices to show that
p11

F(P,ﬁ,P,P)}H = R'(ﬁ,p,p,p)iﬂR—(l,p,ﬁ, l)pll .

But, using our graphical notation,
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F(p,p,p.p)lit =P ﬂ
p,l p,! 1 p,1
1 P,
=1 p 1 p = 1 P
SRR |
P P.l p, I p
P! P! p,!

=R~ (1 D, D, 1) llR (P’P,P,P) ’

since F(1,p,p, 1)}1} = 1 by normalization of the fusion matrices on the vacuum sector.
This completes the proof of Lemma 5.7. 2

As a corollary of Lemmas 5.6 and 5.7 we have the following theorem.

Theorem 5.8. There exist bases in "V(p")l, 71(p%)p, V5(p7)y and Vl(p”)p such
that the corresponding fusion matrix elements F(p,p,p,p)i} and F(p,p,p,p)i}} are
positive. 'l

Proof. Let V?'(p?), V'?(p?), V! (pP) and V'?(pP) be arbitrary bases in ¥,(p?);,
¥1(p?), ¥3(p7); and ¥;(p); let F(5, p, 5. p)i11. F(p.5.p,p)}1} be the corresponding
fusion matrix elements. By an appropriate “gauge” transformation (5.46) we can
achieve that

S o1
0 < F(p,p,p,P)i11 (5.55)
holds. It then follows from (5.48), (5.53) and (5.47) that
0 < F(p.p.B,p)i}} = e7lertes=0s=00F (5, p, P11

= e {@itemes=edF (p 5, p, P11

= /P170270s70IF (p, B, p, P11

—
= F(p,B,p,p)i11
and hence

0 < F(p,p.p.p)it = Fp.pp p)iLL (5.56)
This completes the proof of the theorem. |
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Corollary 5.9.  For the bases of ¥,(p®)1, ¥1(p?),, ¥3(p?)1 and ¥(pP); constructed
in Theorem 5.8,

@ |4,] = F(p,p,p,p)i}} (5.57)

Furthermore,

(ii) [4p] = 145]. (5.58)
a

Proof. By Eq. (5.31),

111 p1l

j’p = ﬁ(ﬁsp’ﬁ’ﬁ)lllR_(Lp’ D, 1)pll

111 ,-2ni8p,p
]

= F(ﬁap,ﬁ9ﬁ)llle
using the notation introduced in (4.56). Taking absolute values on both sides proves
(i); (ii) foliows from Eq. (5.56). |

Next, we begin the proof of Lemma 4.6 (iii). The first step is to define an antilinear
operator between the intertwiner spaces ¥;(p?), and ¥,(p?);, for k, j and p € L. From
now on, we always use basis vectors in the intertwiner spaces ¥,(p?),, ¥1(p?),. ¥5(p")h
and ¥7(p®); which satisfy Theorem 5.8.

Definition 5.10. For p? e .#% and j, ke L, let
CH(pP): ¥i(p") ~ Yilp?); (5.59)
be the antilinear operator defined by

CHp")WV*(p®) = V*pPVj(Tpoozr,1), V™ (0P) € (PPN (5.60)
a

One easily derives from the intertwining properties of (5.60) that C*(p?) V*(p?) e
¥:(pP);. We often use the notation

VH(p?) = C¥(pP)V*(pP). (5.61)

With respect to orthonormal bases {Va""(p")}fz'i, {V,,""(;?’)}:i'} in ¥j(p?), and ¥3(p?);,
the matrix C = (C,;) describing C*(p?) is given by

My
TH@P) = Y CVP(p?)  a=1,...Nb, (5.62)

=1
Cop = (VI@RTH(P)Y  a=1,...N5,  B=1,..Nj. (563

Lemma 5.11. (i) The antilinear operator C*(p?) satisfies

CH(p?) C™(pP) = 14, Uy pm)y 5 (5.64)
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C¥(p?)- CY(pP) = |4,| U 4,9, 5 (5.65)
and hence is an anti-isomorphism from ¥ (p¥), onto "//,,(;?’)j. In particular,
Nj, = Nj; (5-66)
holds.
(i) The matrix elements C,; of C™*(p?) with respect to orthonormal bases
{(VI(pP) 322, (VI (pP)}3% in ¥(pP)y and ¥:(pP); are given by
Cop = F(j,2, B, J)i%h - (5.67)
Moreover,
0 < "X V")) = L F(iop. Py FUp P )L (5.68)
I A A GO T AN
=Y. F(.p. P Y51 F (.. B ) (5.69)
v O

Proof. (i) We prove only Eq. (5.64); Eq. (5.65) then follows by exchanging p with
p and using Eq. (5.58). Since

CH(pP)CHM(pP)Vi(p?) = CH(pP) VI (p")* i(Tpoozp,1)]
= j(eozm, ) V(P )K(T550 0, 1)
= j(T5bo57,1 PP (L5500, 1)) Vi*(PP),
the result follows from Eq. (5.39).

() Let {V*(p")}¥%, {V9(p®)}¥% be orthonormal bases in ¥j(p®),, ¥;(p?);. We
show that

V(P Vi (p?)> = F(i, b, B, Jiag' (5.70)
CVpPY V29 (p®) > = Fi, b, B i - (.1

These two equations imply (5.67)~(5.69). Equation (5.71) follows from (5.70) by
taking complex conjugates,

CVB(pP), VE(pP)) = F(j,p, P, i
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since then, by the properties of the scalar product and Eq. (4.95),

VPP VE(?)> = E(ip B )it
The scalar product (5.70) reads,

(V0P i(Tpoo,1))* Vi (p7)

= j(C%oz5.1) VPP V)(pP) (5.72)
and since
Vi*(pP)VH(p?) = ,;, F(Gop, B D% H(T o550 V(DY) (5.73)

Eq. (5.70) follows from (5.73) by left multiplication with j(I ;.55 ;). This completes the
proof of Lemma 5.11. |

Lemma 5.12. The following equation holds.

Y F(i,p B Y F U B D = 1 (5.74)
b
J
Proof. The right hand side of Eq. (5.74) is given by

51
O, o o

k 1= Z F(l’j’j’ I)Tf'{F(m’psﬁam)'{qylF(n’ﬁ’js l)f:fq
() e
P

Fn,p, j, s F(m, p,p,mALLF (1, j, j, DALY

Using the normalization of the fusion matrices on the vacuum sector, Eqs. (4.78) and
(4.96), we obtain
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1 = Z 5mj6pl(sn1ﬁ(ma b ﬁs m)'iolyl 6Ei(sjm5§15q15ay
m,n,p.n,
G, 7,848

Oax 5mj55 1 551 5/1,; F (m, p, P, m):alul 5»u' 5,: 101

Z Fv(]’ D, ﬁ’ j)’{alal FA(]a D, ﬁr j)l%dlﬁl s
and this completes the proof. =

The next lemma, which is a straightforward adaptation of a result of Doplicher,
Haag and Roberts ([17, Proposition 6.5; Proposition 6.6]) to the present setting,
identifies the explicit value of the graph

in terms of the statistics parameters of the corresponding sectors.

Lemma 5.13.
@) 1= 'Af"ll_’llf' “Ogp.- (5.79)
k
(ll) e21:i(0;'P+8}‘j—0,2,k) = e2m’(sp+sj—sk). (576)
0

Proof. If we multiply the left hand side of Eq. (5.75) by

1 (5.77)
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and use the invariance of graphical equations under Reidemeister moves of type II and
111, as well as Lemma 5.1, we obtain
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=I1_l_'e21ri(sp+sj—sk)5a - (579)
P’ B K

— Ailie2ni(sp+sj—sk)5uﬂ .

Equation (5.78) follows by Theorem 4.8 and Eq. (5.79) by Eq. (4.98). Summing up, we
obtain

5 -

@_ A543 ami

1 PR A P AT T I (5.80)
(D “
P

Setting = f in (5.80) and using (5.69), we obtain

Ashz . S
S gyt = ¥ VI, V()1 > 0. (5.81)
k Y
This last equation implies Egs. (5.75) and (5.76). ]

Remark 5.14. Equation (5.76) applied to the case j = p, k = 1 implies that

4nif;

e PP = e2m’(sp+s,;) (583)

or
1 1
0;.,= i(s,, +5;) <mod§Z> . (5.83)

This is again the weak form of the spin and statistics connection obtained at the end
of Sec. 4.2. [

Theorem 5.15. (i) With respect to orthonormal bases {V*(p?)} iz, {VF(pP)} ,i‘i of
¥i(p®), and ¥,(pP); the matrix C = (C,p) of C*(p®) introduced in Egs. (5.62) and (5.63)
satisfies

14511 4]

CC* =C*C =27
4

1. (5.84)

(ii) The vectors V,9(p?) are orthogonal in ¥;(p?); and have norm v(k o p?; j) equal to
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v(k o pP; j)* = (V5(pP); V2 (pP)>

= AlI4] (5.85)
[ A4l
foralla=1,...Nf.
Proof. (i) Since, by Lemma 5.11, C = (C,,) has matrix elements given by
Cup = F(o2, B, 1 (5.86)

it follows that
(C*O)yp = Ey: C,uCyp
=2 FUip b R F(op. 2 )
=2 FU.p. P ' U 2o B Y
Equation (5.84) now follows from Lelr_lmas 5.12 and 5.13.
(i) Orthogonality of the vectors ¥9(p?), a = 1, ... N}, is clear, since C is unitary

up to a constant factor. The norms (5.85) are easily computed by using Egs. (5.68) and
(5.84). This completes the proof of Theorem 5.15. ]

Let us now define a new antilinear operator, C*(p?), from ¥}(p?), onto ¥;(p?); by
rescaling C*(pP):

CH(p?)Vi(pP) := V9(p?), (5.87)

where

VE(p?) =
v

*(koT_j)Cjk(Pp) V4p®), (5-88)

and {V7*( p”)}fz‘{ is an orthonormal basis of ¥;(p?),. The properties of C**(p?) are given
by the following theorem.

Theorem 5.16. (i) The antilinear operator
CH(p?): ¥(p") = Vil 0”)
is antiunitary and satisfies

CY(O")C¥(pP) =V v pm, (5.89)
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éjk(Pp)ékj(l?) = “‘V,‘(ﬁ)j- (5.90)

@y If {V,""(p")}N?’ is an orthonormal basis in ¥j(p®), then {17,""([)7’)}?;{{7 is an

a=1

orthonormal basis in ¥,(p?);. With respect to these bases,

AL e Vi e P
F(J:P,P,J)l%;pl = F(]spapn])‘ilpl = Wémﬂ' (591)

(i) Let pPopie M}, ,, # = 1,11 be morphisms localized in spacelike cones €, and
%, spacelike separated from each other and such that as p? > as p?. If

VEp?) V™ (p?) = ’Za R*(j,p,a,m}&s Vi (0")V;™(p") (5.92)
s ¥

holds for orthonormal bases {VI(p")}i, {Vi"(p}E, (Ve and
{Vi™(p?)} )7, then the statistics matrix R™(m, g, P, j)i, with respect to the orthonormal
bases { 79(pP)} ¥z, (T (p®)} pmi, {PH(p®)} s, and (T} (pP)}}=2 is given by

R™(m,q, b, j)ige = R*(j,p, g m)% - (5.93)
O
Remark 5.17. Equation (5.93) proves Lemma 4.6 (iii). O

Proof. (i), (ii). Multiplying the orthogonal vectors V¥(p?) by their inverse norm,
we obtain an orthonormal basis {V¥(p?)}¥z of ¥;(p?);. This means that C¥(p?) is
antiunitary and Egs. (5.89) and (5.90) follow. Choosing V%(p?) = V¥(p?), a =1, ...
Ni; implies that

Vi(p?) = . VPPV i(Torepm,1)-

Taking adjoints on both sides, we obtain
v(k o pP; V(PP = j([ezs, 1) VEH(0P) (5.94)
so that multiplying Eq. (5.94) from the right by V}¥(p?),
vk © pP; )0up = J(Topm, 1) VI (0P) Vi (p?)
=F(.p.5. s » (5.95)
where we used Eq. (5.70). Finally, Eq. (5.91) follows from Eqgs. (5.95) and (5.85).

(iii) 1If p?, p? are conjugate to p? and p? and localized in the spacelike separated
cones %, and €, respectively, then locality implies that
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r‘ppoﬁ, 1 rpqoﬁ, 1= rpqoﬁ, 1 rppoﬁ, 1>
pp(rpeoﬁ, )= T eopi 1
P W prozp,1) = Tpoopr,1 -
Taking adjoints on both sides of (5.92) we obtain

Vim(p* Vi (pP)* = Y. R*(j,p, & miGVi™(pP)* Vi (p?)*.

L,y,8

If we multiply both sides of Eq. (5.99) from the right by
j(pp(rp‘hﬁ, 1 )erOFI_’. 1 ) = j(pq(rpl’oﬁ, 1 )quo.p_q, 1 ) ’
(where we used Egs. (5.96)-(5.98)), we obtain

Vi (pt) VE(pP) = lZa R*(j,p, g mi% VM (p®) Vi (p?).
Y

319

(5.96)
(5.97)

(5.98)

(5.99)

(5.100)

Rewriting this equation in terms of the vectors ¥;"(p%), V¥(p*), V;"(p®) and V¥(p%)

(see Eq. (5.87) and 5.88)), we obtain
Ve = TR (m g B gV (0" V),
s Vs
with

. v(m o p?; (i o p%; j)
R™(m,q,p, ))if: = = ==
v(m o p%k)v(k o p?; j)

Iyd

R+(j’ D4, m)kuﬂ

since as p? < as p”.
It follows from (5.85) that

vmo pPi V(o phj) _
v(m o p%k)v(k o pP;j)

and Eq. (5.101) reduces to
R™(m,q, P, e = R* (.0, &, M) -

which is (5.93).

(5.101)

This completes our analysis of statistics and of fusion identities in algebraic quantum

field theory.



Rev. Math. Phys. 1990.02:251-353. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 03/02/15. For persona use only.

320 J. FROHLICH and F. GABBIANI

In the next section we use this formalism to describe the multi-matrix algebras
corresponding to the commutant of reducible representations of the observable algebra
/. This will establish a precise connection between the theory of superselection sectors
and their statistics in algebraic quantum field theory and Jones’ theory of towers of
algebras [28, 51].

6. Path Algebras in Quantum Field Theory, Mapping Class Groups
6.1. The commutant of a reducible representation of 4

In this section, we show how the intertwiners V*(p) and the braid and fusion
matrices may be used to provide a detailed description for the commutant of a product
Pm X *** X pg of representations of «7. Such commutants play a natural role in the
determination of the statistics and internal symmetries of a superselection sector. It is
to be expected that a careful analysis of their structure will be essential to the resolution
of two outstanding problems which remain unsolved for low-dimensional quantum
field theories: the classification of all braid statistics and of internal symmetries com-
patible with the general principles of relativistic, quantum physics. Some of our results
are similar to ones derived by Fredenhagen, Rehren and Schroer in the context of
two-dimensional quantum field theories, although our approach is different from the
one used in [22]. To avoid technical problems, mainly convergence issues, we some-
times consider only rational theories, i.c., theories having only finitely many inequiva-
lent superselection sectors. The results for theories having an arbitrary number of
superselection sectors are expected to be similar.

Let py, ps, p3, ... be a family of representations in L, and let p,, p,, p3, ... be
morphisms corresponding to the sectors p,, p,, ps, ..., respectively. For p, € L, choose
a morphism p, € p, and define

Mpge = po() = {A-1;1€ C}, 6.1)
M7 =(poopyo-0p,yop(A)). (6.2)

By property (P1) of Sec. 2, each MP° is a full multi-matrix ring, and
1 e Mfoc Mpe, k<j, 6.3)

for all j, k € {0} U N. The fusion matrices Ny,i=123,..., adequately describe this
chain of inclusions,

(A1} =Ml MPec -+, 6.4

as we now explain. First consider the product p, o p,. The decomposition

1
MHPO

Po X Py =Py X Po = @ @ e, (6.5)

leL a=1
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into finitely many, mutually inequivalent, irreducible representations / € L of .o/, implies
that

Mfe = py o py () = ’EQ Mat”ﬁlpo(c)’ (6.6)

with the convention that the direct summand Maty: (C) is equal to {0}if N; ,. =0.
Proceeding one step further, e

N2, ro
PoxP1xP2=P2xP1XPo;lL@1P2Xl(a) (6.7)
€ a=
NELiNG o
-] k@ (6.8)
keL leL a=1
and introducing the dimension vectors
u = (#?)tez, = (51p°)1eL s (6.9)
ﬂl = (#tl)teL = (Npllpo leL = Nply’o’ (6.10)
”n‘:(ul")leL= Np,,.u"_l, n=2’ 39 (611)
we may write
Mip=C (6.12)
Mpo >~ @ Mat,;(C) (6.13)
lelL
MP =~ (P Mat,z(C), etc. (6.14)
keL

Furthermore, Eq. (6.8) implies that the inclusion M{° < M%e is given by

@ @ Ny Mat,;(€) = @ Mat,z(0) (6.15)
keLleL kel

so that the associated inclusion matrix is the block A,, = (N;,) of N, where k, [ € L
are such that u} # 0, u? # 0. Iterating the preceding steps, we see that the multi-matrix
chain (6.3) is fully determined [50, 51] by the unit vector u° and the set of fusion
matrices {N,, },. n. These data are conveniently encoded in an (infinite) Bratteli dia-

gram [ 50, 517F:
N
.//\./ \./\\\. (6.16)

ves N
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Eachn =0, 1,2, ... labels a floor of the diagram, and each floor, n, has vertices k.,
..., k., one for each non-vanishing coordinate of the dimension vector u". A vertex
k,-, is joined to each vertex k, by N;":',‘"_l edges labelled by triples (k,_,,a,, k,), o, €
{1,2,..., N,f‘:,‘"_l }. A connected sequence of such edges (I, o, m) determines a path o =
(I, 0, m) o (m, B,n) o ... on the Bratteli diagram (6.16). Denote by CQ the complex vector
space having as basis the set of monotone-increasing paths  starting at the zeroth
floor of (6.16), and by CQ, the space having as basis paths of length n (i.e., ending at
the n-th floor). As is well known [51, 52, 53], it is possible to construct a model for the
chain (6.4) by considering algebras of operators acting on C€). The following result is

then obvious.

Lemma 6.1. Products of intertwiners
VIPo(po) VIoki(py ) V21 *2(py) ... Vintkn(p,) (6.17)

are in one-to-one correspondence with the set of monotone-increasing paths w, =
(Po»21,k1) o (ky 05, k5) 0 - 0 (k,_y, 0, k,) € CQ,. We write V,, for the product (6.17)
and henceforth identify w, with V,, . The vector spaces CQ,, CQ, respectively, carry a
natural scalar product in which the V,, s build an orthonormal basis. If we define the
operators

T("h.:ﬂ)..) CQ" - CQn
Vs Vi VeV, (6.18)
or
Toion = Vo, Var» (6.19)
for two paths n,, w, which are always assumed to have the same endpoints, then
Abe = {T, .0 Mha» @, € CQ,, with matching endpoints} (6.20)

is isomorphic to M}°; T, ., , extends in an obvious way to an operator on CQ. For
additional details, see [51]. O

For rational theories, we define a further multimatrix chain by summing over all
possible initial sectors p, € L,

M..=<EB (Po© """ 0 Puy o;o,(A))> , n=012.., (6.21)

poel
so that we obtain the sequence of inclusions

{M;ieClcsM=2@PC=M cM,c (6.22)

-qeL
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described by the dimension vector
B = (A e (6.23)
=1, forallle L, (6.24)

and the inclusion matrices N, , N, , etc .... The Bratteli diagram of the chain (6.22)
is obtained by placing on each floor 0, 1, 2, ... a vertex for each sector [ € L and N, ;
edges between the vertex j of the k — 1 floor and the vertex i of the k™ floor.
Furthermore, one adds at the top of the diagram a —1* floor with a single vertex

connected by a single edge to each vertex [/ of the zeroth floor:
®
N
I\ \/\\ (6.29)

o

000 wa

The paths w, = (—1,1,kg) o (kg, %1, k,) 0 - o (k,_;,,, k,) on the diagram (6.25) are in
one-to-one correspondence with products of intertwiners (6.17), where the initial sector
Po is allowed to vary over L,

Viko(p) VEki(p,) ... Virtke(p),  pg ek (6.26)

The remainder of Lemma 6.1 is unchanged, and M,, is isomorphic to the corresponding
path algebra A,.
Before proceeding further, we require the following definition.

Definition 6.2. Let 4, be the statistics parameter of the sector p € L. Then we may
decompose 4, as follows:

1

_ ~2xi0,, 5

5= 0 ; 6.27)
1

ol = 3> O (6.28)

The real number d(p) is called the statistical dimension of the sector p. It will also be
convenient to define the row vector of statistical dimensions

d = (d(p)per- (6.29)
O

Lemma 6.3. The vector of statistical dimensions d is the Perron-Frobenius eigen-
vector of the fusion matrix N, with eigenvalue d(p),
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d-N,=d(p)-d, (6.30)
forallpe L. O

Proof. Equation (6.30) is equivalent to

. )Ny = d(p)d (k). (6.31)

lelL

Using the graphical formalism of Sec. 5,

d(p)d(k)=%|71;| @ Q 632)

p k
11 )
= Y A l (6.33)
a=1f.e..L,N}‘,k L4 k e
=Y d()N}, (6.34)
lelL
where Eq. (6.33) follows from (4.99) and Eq. (6.34) from Lemma 5.13. ]

We now turn to the analysis of the path algebras of Lemma 6.1, for rational theories.
Of particular interest to us are the two special cases
@) p,=p; and (6.35)
(11) DP2n =D P2n+1 = P>
foralln=0,1,2,..., where p is an arbitrary sector in L. The importance of these two
special cases is due to the following lemma.

Lemma 6.4. (i) The multimatrix chain
p(y < p*(A) < -+ (6.36)
associated to (6.35) (i) by definition (6.1), (6.2) carries a unitary representation of the braid
groups B,, for n = 1,2, ... which is determined by the R*-matrices.

(1i) The multimatrix chain

{AM;AleCec My, M, < 6.37)
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associated to (6.35) (ii) by definition (6.21) is a tower in the sense of Jones. The matrix
N, describes the inclusion My < M, and the index of this inclusion is

[M; M,] = d(p)*. (6.38)
0O

Remark 6.5. Lemma 6.3 identifies the Perron-Frobenius eigenvector of Lemma 2.4
with the vector of statistical dimensions. Lemma 6.4 (ii) is analogous to the result of
Longo [31] that the index of the tunnel

() 2 p(A(®)°) 2 pop(d(#) )2 (6.39)

is given by d(p)*. By a well-known theorem of Jones [28], Eq. (6.38) restricts the possible
values of d(p)? to the set {4 cos? (g), n=34,.. } v [4, o0). O

Proof. (i) For each n =1, 2, 3, ... we specify a map = sending g, to an operator
n(o,) in AL which is unitary and such that the braid relations

n(o)n(oy) = n(o)nls), |i—jl=2,
(6.40)
1(0)7(0;41)7(0;) = 7(0;41)m(0:)7(0:41)

hold. This defines a representation of B, = | ), B, on the multimatrix chain. Let
w,_, denote a path of length n — 2 on the Bratteli diagram (6.16) and set

+ kol
Gan(an) = Z R (kn—27 D, D, kn)k:_ia:_:a:
kpskn—1,&n-1,%p,
L MNP S S N

X Vi, _, Vi 25a=1((p) V=150 p) W fn shn( o) o 2ns p e/ %

An-1 @p-2 "

(6.41)

When applied to a basis vector @, = w,_, o (ky_ 3,01 Kkp_1) © (Kye1s %y, k,) of CQ,,
the action of (6.41) reduces to

(O Ve, Ve (Pl () = % R¥(knog, Py o kit i
Ky 10 %p 0,
X V., Vimdbo1(p) Vi tkn(p) (6.42)

Unitarity of n(s,) follows from unitarity of the R*-matrices, and the fact that 7 is a
representation of the braid groups, B,; from the Yang-Baxter equations.
(iij) By Lemma 5.11,

N} =N}, (6.43)

p
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so that
N, = N
Hence the inclusions
MycM,csM, < (6.44)

are described by the matrices N,, Ni, ... and the dimension vector i’ =(1,1,...)so0
that (6.44) is a tower. Equation (6.38) follows from Lemma 6.3 and [28]. |

Remark 6.6. (i) It follows from Egs. (6.41), (6.42) and Lemma 4.3 that the repre-
sentation  of B, defined in Lemma 6.4 (i) coincides with the usual algebraic definition

n: o, - p" (e, ). (6.45)

(ii) The statement of Lemma 6.4 (i) holds unchanged for a theory having an arbitrary

number of superselection sectors. The proof of Lemma 6.4 (i) shows that, for a rational

theory, the R*-matrix elements also define a unitary representation of the braid
groups on the multimatrix chain

(A;leClcsMysM, s M, < (6.46)

associated to (6.35) (i) by Definition (6.21). g

In the following, we first concentrate on the multimatrix chain associated to a single
representation p € L (case (i) of (6.35)). Our first goal is to define a trace state on the
group algebra of B, associated to the representation n which coincides with the usual
trace state of algebraic field theory. We remark that the graphical diagrams involving
R*-matrix elements acquire a new significance after the proof of Lemma 6.4: if we
consider a diagram with n incoming and outgoing strings, fully decorated with labels,
such as

b =1 [ b ] kn =kn, bec (6.47)

P)1 pay P2 P %R

where the box b contains an arbitrary combination of R*-matrices, then we may assign
to b an element b of the braid group B, such that

b= (Vainb)V,,, (6.48)

thre Dy = (p,al’kl) oo (kn—l’am kn) and &—)n = (P,EUEJ 6o (En—laam kn) COD-
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versely, to any b € B, there corresponds a diagram b such that Eq. (6.48) is true for any
paths w,, @,. We now briefly explain how to reconstruct b from the diagram b, the
remaining statements are then obvious. Read the diagram b from bottom to top and
at the first crossing,

&k,'l ay, A p-i Qg
paak|-| prak| p’ak|'| p'aki

@ (i)
Fig. 6.1

assign to Fig. 6.1 (i) and (ii) the braid group generator oy, gy, ! respectively. Relabel all
outgoing lines after the first crossing with dummy indices &,k = 0, 1, 2,... in increasing
order from left to right, as noted in Fig. 6.1 for example, and proceed to the next
crossing. Multiplying the o;f'’s, [ = 1, ... r, we obtain an element b = o6 ... 67!
such that Eq. (6.48) holds.

The preceding remark allows us to define immediately a functional on the braid
group B,: for b € B,, take the diagram b associated to b and close the braids (using the

conventions of Sec. 5) as follows:

. (6.49)

Equation (6.49) extends by linearity to the group algebra of B,.

Lemma 6.7. The functionals ¢,: C[B,] — C satisfy
@) @ui1(B) = @u(d) if b€ B,.

(ii) @a(bo,) = 4,0.(b),
(pn(ban—l) = lp(pn(b) for b € Bn-l'

(i) @y(b1b,) = ,(b,b,)Vby, b, € B,.

(V) @u(b1b;) = @,(by)@u(bs), if by € By and b, € B, _;,
where B,_, denotes words in the generators {0,,,,...,0,} of B,.

V) @(1) =1 O
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Proof. (i) If b € B,, then

(6.50)

D.‘ D»Gn An+l

is the diagram for b in B,, . It follows that

Posio)= | B | = 5 ] = P (b)y (651

(ii) The element ba,, b € B,_, has the associated diagram

Qn

(6.52)

so that

Gtboy) = [ B | (6.53)

and the statement follows by Lemma 5.1. The second identity in (ii) is shown in the
same way.
(iii) Let b, and b, be any elements of B,: the diagram of b, b, is

(6.54)
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and we want to show that

(6.55)

Since b, and b, may be fully decomposed into a product of g,’s, it is sufficient to show
that

(pn(aka) = (Pn(bz ak)’ Vb2 € Bn . (656)

The assumption will then follow by repeated use of Eq. (6.56). But Eq. (6.56) is
immediate since g; can “climb up on the opposite ladder™:

pn (o-k b2) =

(6.57)

=¥, (b2 oy) -
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(iv) The proof of this property is particularly simple: if b, € B, and b, € B,_, then
the diagram of b, b, is

(6.58)

so that

¢n<b.,bz>=t = [ b] [ B2 ||| (6.59)

=9, (b)) - @, (b2)

where (6.59) follows by repeated use of Reidemeister moves of type II and III; see Egs.
(5.20)—(5.25).
(v) is immediate, since

vy = =1 (6.60)

by repeated use of (4.98). [

Remark 6.8. It follows from Lemma 6.7 that the collection of ¢,’s defines a trace
stategpon B, = U,, >o B, This state is called a Markov trace, because it enjoys property
(ii) of our last lemma. We use the notation ¢ = tr,, for the Markov trace on B,,. []

Next we show that the trace ¢, can be extended to the whole multi-matrix algebra
AP = Pher Mat, -(C). A trace on the multi-matrix algebra AJ is fully determined by
its trace vector t" = (t) ., Where t; is the trace of a minimal idempotent in Mat,»(C).
We will explicitly compute the components ¢, k € L, of the vector ¢* and show that
they are strictly positive. This implies faithfulness of the trace ¢, as a state on AZ.

The path space CQ, is isomorphic to a direct sum of tensor products

€Oz P CHRCHR @ CHui @ ® Cor (6.61)
ky

..... kn
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A basis for CQ, is given by the vectors
V() VES (p) Va2 (p)... Vi ki(p) .. Vi tkn( ).

If we 1dent1fy the orthonormal basis of the vector space C%h-: with the set
{Vgamikay ek P’il « we may define two linear operators F and F which act on C*%k., by
setting

F“"CN’;k, 1 Z[:! F(kl 1:p’p’kl l)lllﬂl Tﬁ, )
&b

(6.62)
Flchk, = Z F(kx 1D Dk l)k,a,ﬂ, Bra)

ag, By
where

Tzﬂlial): CN:'I‘"’ ’_’ CN:’£I—1
sz ""(p)H <ka 1k,(p) V"' ‘k‘(p)> k"’k'(p).

Using Egs. (6.61) and (6.62) we construct two operators F and F in the path algebra
A? as follows:

Ty
]

5, Flon,@Flon; @ s,

(6.63)
F

Zk Fleng, ®F|c~h ® - ®Flevg .

ki ks,

Lemma 6.9. Let b, be an element of B,. Then the Markov trace of Lemma 6.7 on
the group algebra of B, is given by

try(b,) = te(F - n(b,)- F), (6.64)

where tr(-) is the standard trace on the algebra A? = Py, Mat, 2(C). Clearly, the
Markov trace tr,, extends to the whole algebra AL, O

Proof. This lemma is nothing more than a reinterpretation of the diagram (6.49)
defining the trace: each curved leg
m (6.65)
P P
corresponding to an operator F on the appropriate subspace C™4-1 and each

PP (6.66)
U .

to an operator F. u
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We now turn to the computation of the Markov trace of a minimal idempotent of

Ag LCt W, = (P, ‘yl’ll) ° (11,')’2,12) 6-ro (ln—l’yns ln) SO that

=V, V¥,

WOp; 0) Wy~ Op

T,
Vo, = VPV (p)V;12(p).... Vyrtin(p)
is a minimal idempotent of AZ in Mat,,;."(C). Then
1 = try( T, 0y) = te(FV, V.2 F).
On A2, we have

Z ka(K)B(k) (E, “(k)) V(I_‘, ﬁ(k))* s

(k
(k

)
I
lI‘M

-3
RaZan

Y Fupoa V(K a(R)V(k, B(K))*

(k
(¥

¢
Il
IkM

p-3-X
RaZan

where we use the notation
k=(kyenky),  L=(4,..,1),
(k) = (21 (k) ..., 0, (K)),
Bk) = (Bi(k),..., Bu(K)), ¥ =(1seeesa)

111

6.67)

(6.68)

(6.69

F‘L(a(lz)ﬂ(g) = ﬁ(p’ P’E,P)k,a,ﬁ,F(kl’P,P’k )kzazﬂz - X FA(kn-l’paﬁ’ kn—l)l}"latﬂ" (670)

Fv‘gﬂ(lc)a(g) = F(p’ p’ﬁ’p)ﬁllﬂllalﬁ(klap’l_” )‘izlﬂlza2 X X F’(kn—l’p9§’ kn—l)

Vik,a(k)) = VI2(p)VE (p)VE*2(p). .. Vintkn(p),
Yk, BUON* = Vg tin(p)* Vimsbees(p)® - VAP o).

Hence,

FV,V3F= % FuwswFeswaw V(K a(k)V(k, BK)*V,

k.a(k), B(k),
k', a(k’), B(k')

x VEV(k,a(k))V(k',B(k'))*

and since

(6.71)
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V(k, B(k))*Ves,, = 0p,3,0%,1, 98,7, - - Okt = Cui0piary s

(6.72)
Va VK, a(k')) = 845,001,007, - Ous, = O 10atiery
we obtain
F Vo, V;,';F =D ﬁ.ta(_tnl’:_tm_ny V(L a(D)V(L BD))* (6.73)
8D
so that
te(FV,,, Va F) = ;) o Fipananin
8D
= % FragoFrany- (6.74)
Combining Eq. (6.74) with Eq. (5.91) we obtain the following result.
Proposition 6.10.
(i) The trace vector t" on AL = @), Mat,,(C) is given by
t"= (tl’:)kEL ’
dk) .
i ur £ 0
g =4 d(py* f o (6.75)
0 otherwise.
(ii) The Markov trace on AL, extends the Markov trace on A%, for all n. O
Proof. From Eqgs. (5.91) and (6.74) one infers that
2 n+1l 1
L= 14, dd,) (6.76)

T4 Ayt

and (i) follows.
(ii) Since d = (d(k))., is the Perron-Frobenius eigenvector of N » to the eigenvalue
d(p), by Lemma 6.3, it follows that,

= ; tINL 6.77)

and this implies that the trace on 4%, extends the trace on A%. "

To make the preceding discussion complete, we add the following obvious remarks:
(i) If we consider the multimatrix chain

Mo Mpc - (6.78)
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associated to the sectors py, p;, p;, ... then the R*-matrices no longer define a
representation of the braid groups on a path space. Nevertheless, the operators

Ri(pm pn+1) = Z Ri(l’pm pn+lsm)l{z;

Dp—p,
m, j.k,a,B,
78

X Vo, . Yy (s DV (0) V™ (s Vi (0W)* Ve, (6.79)

define isometries between the path spaces associated to the Bratteli diagrams of p,,

DPis--+ Pn—15 Pns Pn+15 -+ and Pos P1s+++ Pn—1> Put15 P> -+ -
(i) Just as in the case of a single sector, it is possible to define a faithful trace on the

multi-matrix chain associated to the sequence py, py, P2, .- Py - - - - If we represent the
matrix element of b € 420

<Vw"s bVa'),,>’
Vau = V7o) VE (1) Vi 2(03) . Vi () (6.80)
Va, = VI2(po) VEF (1) Vi 2 (02) - Vi ()

by the diagram

Po+! P1s@y Pp.ag

(6.81)

then, using the conventions of Sec. 5,

[ B ] (6.82)

defines a trace on AZe. It is easy to check that this trace is faithful, with trace vector

t" = (e

L1 1 1_{d(k) if yp # 0 683

& ~d(po)d(p;) d(p) |0  otherwise

and that the trace on A9, extends the trace on Afe.
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(iii) On the tower (6.37) the vector

1
t”=W)n+—l-d, n=0,12,... (6.84)
defines a (positive) Markov trace of modulus § = d(p)® in the sense of Goodman, de
la Harpe and Jones [51]. Any other (positive) Markov trace on the tower (6.37) has a
trace vector which differs from (6.84) only by a multiplicative constant.

(iv) It is easy, albeit lengthy, to check that the trace ¢, defined on p"(/) coincides
with the normal functional (¢,)" on p"(#/), where ¢, is the unique regular left inverse
of the irreducible morphism p; see [22].

We now return to the study of the path algebra of a collection of sectors p,, p,,
o5 Pu—t> Dy --- and the decomposition of the product p,_; x p, into irreducible
subrepresentations:

N,

1
PnPn-1

Dot X P = P 1@. (6.85)

lel a=1

Using the matrix elements P“?(n,p,_,, p,, mi5,

Pr-i’P P27

1, ‘on ol 4 ,
| m HP( 7')(n)pn—lipmm),I:a‘;’, - ; F(”?pn—l’pmm)ﬁ%F(n’pn—l,pmm)fyg”

Pn-] ,a Pn ’ ﬁ
(6.86)
we define a set of projections in the algebra A?° by
PUYpuysb) = Y POk gy Pacss Pus ki ian iV, Vi ei(p, )
kn—l‘:’:;—zi'um
LIARTY Y. 4
X Vitbn(p, ) Vlmtkn( g, ¥V intbnoi (g, JHVE (6.87)

Let us denote by CQ, the path space on which the algebra A% acts and by CQ,_, , the
path space on which

ARy = (po o © Pu-z 0 pUA)), p=lelL. (6.88)

acts.
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Lemma 6.10. The set {P“?(p,_,,p) }ier y=1,... N, ,._, consists of selfadjoint, ortho-
gonal projections belonging to the path algebra AE°, which satisfy

IZ PEI(p,_y,p,) = ﬂ|Ago . (6.89)
v

Each projection P“"(p,_,, p,) projects CQ, onto a subspace V") which is isomorphic
toCQ,_, ,. |

Proof. From the definition (6.87) of the projections P“"(p,_,, p,), it follows that
self-adjointness is equivalent to

PP (n, i, j,mles, = PUV(n, i, j, gy (6.90)
J ]

k'np
This latter equation follows immediately from the definition of P"“?(n,i, j,m)}t,
Eq. (6.86), and the fact that F and F are unitary matrices, inverse to each other.
Orthogonality of the projections and completeness, Eq. (6.89), follow from the corre-
sponding properties of P“?(n,i, j,m), Egs. (4.101) and (4.102). Finally, we notice that
the linear mappings

Uy, CQ,—CQ,
(6.91)
@y, CQy-y — CQ,,

defined on the basis vectors of the respective path spaces by

%(l.y) Vw,,-z l/az’:,':2kn_l(pn—1)Val:,"_lk"(pn) = ; ﬁ(kn—Z’ pn—l ’ pm kn);ctila,,_la,, Vw,._z de"_z“"(pl)

017(,, 7) an—z VJkFan(pl) B k, ﬂz B i(kn—Za pn—l ’ pru ku)ﬁ‘glﬂnﬂﬁ" Vw,.-z
x Vo n1(py_y ) Vgn-tkn(p,) (6.92)

are partial isometries with the properties

%(l,y)@(l,y) = Yea,,, (6.93)
Ui Wapy = PP (a1, P2)- (6.94)
This completes the proof of Lemma 6.10. ||

Next, we consider the tower (6.37). Then for alln > 2 the productp,_, X p,=p x p
contains the vacuum representation 1 precisely once. We introduce the notation

e,=PYYp,_1,p)), n=2234,.. (6.95)
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for the projections corresponding to the vacuum sector. By definition, Eq. (6.87),

— 1,1 = ki _1an-a; Ky—2kn—1
en - Z P( )(kn—Z’ P, p’ kn)k:_:‘z:-:a: Vw,,_z I/a;:ll " (p)
Dp-2s
kp—1,0n-1,0p,
k12 @1, 20,
n

X Vo tkn(B) Voin hn( By Vil s () VX, (6.96)
for n even (for n odd, exchange p and p). The sum over w,_, in Eq. (6.96) is a sum over
all paths of length n — 2 on the Bratteli diagram (6.25).

Lemma 6.11.
d(k,_,)"?d(k,_;)'?

R R Y T Il
so that
d(k,_)2d(k,_ )" . .
" S e O
X Vgn-tkna(py*yn-zin-t(p)*y % (6.98)
holds, for n even (for n odd, exchange p and p). d

Proof. Equation(5.91)and Eq. (6.86) imply (6.97) which in turn implies (6.98). W

Theorem 6.12.  The projections {e,}, , on the tower (6.37) satisfy the Temperley-Lieb
algebra

@) € = €mly, M —nl > 2,
(6.99)
(11) ﬁenenilen = €y, Vn = 0’

and, moreover,
(iii) Bry(xe,) = try(x)
holds, for all x € A,_, and for B = d(p)>.

The projections {e,},- o are Jones projections, in the sense that e, € A, implements the
conditional expectation of A,_, onto A,_,:

e.xe, = E, _ (x)e,, VxeA,_, (6.100)

where E,_,: A,_, — A,_, is the unique conditional expectation of A,_, onto A,_, which
is compatible with the Markov trace on A,_,. O
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Proof. Using formula (6.75) for the trace vectors t" !, t"~2, we obtain

tn— 1/2 t",_l 1/2 , ,
( k"") ( k""l) Vv V’fu—zkn—l(p) Va’z‘n-xkn—z(ﬁ)

a= ¥

tn_'z Wn-2 " ap
@p-2, kn-2
kn—hk;vl,
Ay 2y
X Viniknoa(G)eYhn-dkn-s (V> (6.101)

Equation (6.101) is none other than the well-known formula of Ocneanu and Sunder
for the Jones projection e, [51,52,53]. The rest of the theorem follows, for example,
from [53, Proposition 6].

Remark 6.13. The Temperley-Lieb relations (6.9) for the projections e, were first
derived in [22], in the context of two-dimensional theories. a

As an illustration of the preceding arguments, we now treat the example of a self-
conjugate sector p € L which satisfies the composition rule

pxp=1®gq, qgelL; (6.102)

see also [22, 31].

Models which satisfy this composition rule are found in two-dimensional conformal
field theory, for example the SU(2) — WZW model [65,66,67]. In this case, the
representations of the braid groups defined in Lemma 6.4 (i) and Remark 6.6 (ii)
are given by C*-representations of Hecke algebras of type A,, as analysed in [59].
Combining Remark 6.6 (ii) and Lemma 6.4 (ii), we obtain, for p satisfying Eq. (6.102),
representations of the braid groups on the tower characterized by the inclusion matrix
N,. We will show that these representations coincide with the ones defined in [60]
using Jones’ projections.

The next lemma tells us how to recover an arbitrary braid matrix element from
fusion matrix elements and braid matrices acting on the vacuum sector.

Lemma 6.14.
Py P,d
D,)’ P:S . m
m O
i\\/l = X RGpp G | Te o (6.103)
k\ S0 0
p,a p,B K
P.a p!B

Proof. From Eq. (4.122),



Rev. Math. Phys. 1990.02:251-353. Downloaded from www.worldscientific.com
by UNIVERSITY OF TORONTO on 03/02/15. For persona use only.

BRAID STATISTICS IN LOCAL QUANTUM THEORY 339

s,V s,V
Y R*(,p,p, 1)Z} ) L= ! (6.104)
# k
p.a pP,B \
p.a p,B
it follows that
P,y P8 Py p,8
m m
) Q O,
sE“R*(Em,l)g,‘ﬁ is =§' iofs 1 (6.105)
© o
k
p.a p,B k‘)
p.a p,B
and our assertion follows from (4.99). a

For a sector satisfying Eq. (6.102), Eq. (6.103) reduces to

p.y 0,3
m P,y P:3
Y RGapf T . j\"' | (6.106)
$=1.q
k\
k p,a P:ﬁ
p.a p,B8

Let us introduce the following notation:
@(s) = e*™%) .= R*(5,p,p, E;], (6.107)
(1) := e*# = R*(L,p,p, 11, (6.108)
so that, using Eq. (6.86), we have that
(VP V() p,p, g + o(@P“V(j,p,p, D5} = R*(j,p,p, D . (6.109)

This means that the representation n of the braid groups, generated by the R*-
matrices on the tower (6.37), is of the following form:

n(0,) = ¢(1e, + o(@)(1 — e,), (6.110)

where we used Eq. (6.89). Rescaling n(s,) we obtain
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gn=qe, + (1 —e,), (6.111)
with
gn=0@7(o,),  q=o(1) 0. (6.112)

Proposition 6.15. [31]
(1) If a sector p € L satisfies Eq. (6.102), the representation

O, g, = qe, + (1 - en) (6113)

on the tower (6.37) coincides with the representation defined by Jones in [60].
(ii) The phase q = @(1)- ¢(q) is related to the index d(p)* of the tower by

dp) =q+q"' +2. (6.114)
(ti1) The statistical dimension d(p) of the sector p satisfies

d(p) < 2. (6.115)
O

For the proof, we refer to [31, 60]. The previous considerations allow us to treat a
more general case: if a sector p € L satisfies the composition rule

pxp=j®k, jkelL, (6.116)
then the braid group representations on the multi-matrix chain (6.35) (i) are given by
n(o,) = @(j)PYV(p,-1,py) + @(K)P“D(p,-1,P,)- (6.117)

It is easy to check that the elements
gn = — (k) n(,) (6.118)

satisfy the defining relations of the Hecke algebra H,(q), with parameter
q = —o(j)- ¢(k). The representation theory of these algebras, equipped with a positive
Markov trace, has been studied by Wenzl in [59]. It is possible to derive, from the
work of Wenzl, restrictions on the possible values of the parameters g and 4, (see also
[22]). Examples of models which contain superselection sectors satisfying Eq. (6.116)
appear to be SU(n) Chern-Simons theories in 2 + 1 dimensions [68, 23, 69, 70].

Recently, Wenzl [64] has given a complete list of unitary representations of Birman-
Wenzl algebras admitting a positive, faithful Markov trace. His results allow us to
study a three-channel self-conjugate sector p € L, provided it satisfies some additional
conditions. Such superselection sectors are expected to arise in SO(n) Chern-Simons
models.
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Proposition 6.16. Let p € L be a three-channel self-conjugate sector, that is,
pxpx2l1®j®kjkelL. 6.119)
The elements
gn = io(j)?- @)™ n(a,) (6.120)

satisfy the defining relations of a Birman-Wenzl algebra provided the following two
conditions hold. If we define

cos (8,(j) + 6,(k) — 26, ;)
~ cosa(B,k) — 6,(j)

then
d(p) = |x|, (6.121)

and
@(k): o(j) = —sign(x) (6.122)
where @(s) = e2™%9) s =j k. O

Like in the case of Hecke algebras, this allows to derive from [64] restrictions on the
possible values of the parameters 6, ;, 8,(j) and §,(k).

Proof. For p satisfying (6.119) one finds

n(a,) = (V)P V(p,_;,p,) + @(/)PV V(p,-y,p,) + @) P*V(p,_;,p,). (6.123)

The defining relations of a Birman-Wenzl algebra are [64]
() 9nGn+19n = In+19nGn1

(1) gngm = GmGn> In —m| = 2

(lll) (gn - rvl)(gn + q—l)(gn - q) = 0’ q,r€ C

(iv) e,gil e, =rtle,

for invertible g,’s. In (iv), the element e, is defined by

@—a Nl -e)=g,—9g," (6.124)

Equations (i) and (ii) are the defining relations of the braid group and hence are satisfied
by n(o,). If one rescales n(a,), setting

gn=0anlo,), o =—o() ok (6.125)

it is easy to check that the g,’s also satisfy (iii), with
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g=a k) =—at o)™ (6.126)
and
r=ale)™t. (6.127
If we define e, by Eq. (6.124), it follows from (iii), (6.123) and (6.89) that

P -
=PI (g py),  x= LTI (6.128)

Furthermore, the graphical equation

; =), (6.129)

which follows from Lemma 5.1, implies that

P“'l)(pn-l’pn)n(an—l)P(l‘l)(pn—lapn)=A’pP(I'l)(pn—l’pn) (6130)

holds, where 4, = %p) o(1), by (6.27). It then follows from (6.125) and (6.128) that (iv)

is satisfied if and only if
XA, =T. (6.131)

Taking absolute values on both sides we see that

r—rt

dp)=Ix|, x=1+ =
9-4

eR (6.132)

and comparing phases, we obtain

o(D)sign(x) = ra. (6.133)

Combining (6.133) and (6.127) with (6.125) one finds (6.122), while (6.121) is obtained
by expressing the parameters r and g in (6.132) in terms of the physical quantities ¢(1),

»(j) and (k). n
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The following Corollary is an immediate consequence of the results in [64].

Corollary 6.17.
(a) The pair (r,q) € U(1) x U(1) defined by Eqs. (6.126) and (6.127) can take only the
values

nifl

q=e and r=gq" (6.134)
with | and n satisfying one of the following six conditions:
(i) n =0 and lis arbitrary.

(ii) n = 1 and l is arbitrary.

(iii) n=2and l e N/2.

(iv)2<n<l—2andleN.

(v) —l<n< —1,nevenandle N, ! odd.

(vi) —I<n< —1,noddandle N, | even.
Moreover, (r, q) can take all values obtained from (6.134) (1)—(vi) by one of the following
transformations:

rq)—=(-r,—9
re-0rtqh)

(r’q) _’(r’ —q-l)'

To each choice of (r,q) in the classes (i) to (vi), there corresponds an associated principal
graph I (r, q) which completely characterizes the corresponding unitary representation of
the braid group B,

(b) Forr and q chosen as in (6.134), (1)—(vi) this implies that

6,5 = ';Tn <mod%Z> (6.135)
1 1

6,00 =35, (modZ z) (6.136)
=1 1

6,(j)= S (modzl) . (6.137)

a

Proof. (a) is merely a restatement of some of the results obtained in [64] for unitary
representations of Birman-Wenzl algebras carrying a positive Markov trace. For more
details we refer to [64].

(b) Since by Eqgs. (6.125)-(6.127)

g = emi6pR—0,()+1/2)

(6.138)

r = emiOpi+o,(0-26, 5=112
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it follows from g = e™" that

1 1
0,(k) — 6,(j) = 7 (mod 3 Z) . (6.139)
Furthermore, the constraint (6.122) implies that
O,(k) + 6,(j) =0 (mod % Z) . (6.140)

From (6.139) and (6.140) one easily derives (6.136) and (6.137). Equations (6.138),(6.140)
together with r = g" mean that

—n 1

or
—n 1
This completes the proof of the corollary. a

Finally, we remark that one expects to extract further information on the structure
of the towers (6.37) by using methods developed by Ocneanu [61].

6.2. Projective representations of mapping class groups

Next, we show that starting from the statistics and fusion data of a three dimensional
algebraic field theory with braid statistics, one can define matrices S and T which
generate a projective representation of SL(2, Z).

Following ideas in conformal field theories [63], we define an |L| x |L| matrix

lp = ('//ij)’ l,.] € L’ by

e (\
Yy = d(i)d(j) '\) ] (6.141)
_/

= d(i)d(j) kzﬂ R*(i i, j, jYby - RY G Ji i, s -

>,y

It is easy to see that the matrix elements y; satisfy the following properties.

Lemma 6.18.
(i) ‘l’il =Yy =_d(i)
(ii) l/’ij = !/’I: = '/’ij' = '/’ji
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(lll) '//ij — Zk Ni';ez"i(s‘”f—s")d(k) —_ Zk Ni’;ez,’i(Oi'E+9j']_0k';d(k)
) 1
(iv) d—(ﬁlpkj‘pij = Zm Ni'i?‘l’w O

Proof. (i) is obvious. To prove (ii), notice that by using Reidemeister moves of type

11 and III, one has that
\j(\ |

/

Q@ (6.142)
OO (6.143)

Equation(6.142) implies that y; = Yz, and (6.143) shows that y;; = 117,1, since d(s) = d(5)
holds for all s € L, (Corollary 5.9 (ii)). To prove (iii), one uses Eq. (4.99), Theorem 4.8
and Lemma 5.13,

@

=d@d()Y 17
k,a 0

— d(l)d(]) Z e2ni(s,»+sj—sk)
k,a

s i 3 d(k)
—_ 2mi(s; +sy—sp) N7k
d(i)d(j) g e Njj 20d0)

— ; ez"i(s‘+sf_s")Ni’J‘-d(k).

The second equality in (iii) follows from Lemma 5.13 (ii). Equation (iv) follows from

1 229 AY
005V = AR Uj N b
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= d(k)d(j)d(@) QC @
= d(k)d(j)d(i) @

/@
= ¥ dyd)d(j) x| [m ]
m,a /

= Y d(k)d(j)d(i) ik (ﬁu\j

m,a /
= z N,;',','d(m) TQ(\J
J

=Y N2, (6.144)

where Eq. (6.144) follows from Lemma 5.13(i). This completes the proof of Lemma 6.18.
u

Point (iv) of Lemma 6.18 means that the vectors
@5 = WUmdmer (6.145)
are common eigenvectors of the fusion rules N;,
N;o; = 4,0, i,je L
Y

d(j)
diagonalizes the fusion rules,

with eigenvalues 4;; :=

Now the point is that if the matrix ¥ is invertible, then it
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r=y V’kﬂ/l/’;f'f; . (6.146)
i 1j

An explicit example of this diagonalization process is given in [43] where the .9/21(2),,_1
fusion rules are derived. In [62] a criterion is given which settles when ¥ is invertible.

Lemma 6.19. [62]
(i) With respect to the canonical scalar product of CM, the vectors ¢, are either
orthogonal,

<(pj’(pi>=0’ i#j,
or parallel,

d(@i)e; = d(j)e;.

(i) The matrix  is invertible if and only if no vector @; is parallel to ¢y, j # 1.
(i) If @; is parallel to ¢@,, j # 1, then the superselection sector j obeys permutation
statistics. O

Proof. (i) By Lemma 6.18 (iv) we have that
1
m‘/’g(‘l’t; o = <o Ni‘Pj>
= Zk Y N Y

=X (NEY) g

Z m 'l/tl‘/’m;

1
= M Yul s 0.
Hence, if (¢;; ;) # 0 it follows that
d()g; = d(j)er.

(ii) Using again Lemma 6.18 (iv) one finds that
P50 = Z ViV = Z Yi¥
1 J
= Z, NEYmd(J)

= ; NG P15 Omp
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and, since by assumption,
P15 Om) = 81m(2 A(jY?)
we obtain that
(o5 o> = (X d0j)?) -
This means that
v = (2 4. (6.147)

(iii) It follows from Lemma 6.3 and Lemma 6.18 (iii) that y; = d(i)d(j) holds only if
e?™ts7%) = 1, for Nf; # 0. The conclusion now follows from Theorem 4.11. [ |

Under the assumptions of the previous lemma, it is possible to rescale i so that
§ = (3 d(?) ™y
is a unitary matrix, by Eq. (6.147). Next, we define a |L| x |Lj matrix T = (T;;) by
T; = e 2™4e2ming,,. (6.148)

If the constant ¢ is chosen appropriately, the matrices S and T have the following
properties.

1/3
Proposition 6.20. Let ¢ = Y d(i)%e™ ™ and ™2™ = <%> , then the matrices

S, T and the charge conjugation matrix C = (;) satisfy the following relations:

S*S=T*T=1 (6.149)
TSTSTS = C, TC=CT=T. (6.150)
The constant ¢ is determined mod 8. |}

Remark 6.21. Equations (6.149), (6.150) imply that S and T generate a projective
representation of the modular transformations t — —(1/7) and T —» 7 + 1, just as in
two-dimensional conformal field theory. In that context, the constant c is the central
charge of the Virasoro algebra. The remark that the modular S matrix diagonalizes
the fusion rules was first made by E. Verlinde for rational conformal field theories [63].

Proof. By Lemma 6.18 (iii),

> Wyd(je™ > = Y Nfe*™=sd(k)d(j)
J

k.j
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=3 d(kgerie (z Mi-d(f))

<; d(k)ze—Zm'sk> d(i)e2nis,»

= od;e*™s:,

This last equation implies that

(Z, %d(l)ez"“‘) (XJ: l//.-,-d(j)e”z”"s’> = |o)*d(i)

and summing over i, we obtain
; d(j)d(l)e= = Z Yavy = 0P (L dG)?)
or, by (6.147),
<§1: d(l)2> = |o|?.
This latter equation and
; Yye 2 iy = sz d(j)e > INR Y s
= gemitrtsg

are sufficient to derive (6.149), (6.150); see also [62]. ]

The appearance of matrices S and T satisfying the relations of the modular group
generators, in the context of three-dimensional, generally massive, local quantum field
theories, might seem, a priori, surprising. However, this fact can be understood by
noticing that every three-dimensional field theory with braid statistics appears to
determine the chiral sector of some two-dimensional conformal-field theory on the
circle. Heuristically, the argument to see this goes as follows. Let V1¥1(p'), Vjii2(pi),
..., Vinl(pin) be a set of intertwiners between superselection sectors of a (2 + 1)-
dimensional quantum field theory, where the morphisms p't, p', ..., p/= are localized
in spacelike separated cones %, 4, . . ., 6, with apices ag, a,, . .., a,in the {t = 0}-plane
and asymptotic directions 6,, 6,, ..., 0,. Let us define the vacuum expectation values
of these fields

BlY (s 2,0) = < Vi (ph) Vit (plr) L Vi (p7)Q) (6.151)

.....
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where o« = (ay,...,a,_,), 8 = (6,,9,,...,0,) and a = (ag,a,,...,a,). It is thep possible
to write the function B/’ ’/" in terms of two functions F;"’

vyl A RS L AWD AULIVUIVAS S i, MY Mg n

Bl i a0) = Fl e 06 i a:0) (6.152)
where G is single-valued, and F only depends on 6, but not on g@. The monodromy
properties of F are those of the conformal blocks of a two-dimensional theory. The
angles 6,, 0,, ..., 6, can be interpreted as the compactified light-cone variables Qf the
be constructed from the B’s by an appropriate scaling limit. Such ideas have previously
been discussed in the example of SU(n) topological Chern-Simons theories in [69, 70].
In conclusion, one can argue quite convincingly that general three-dimensional Chern-
Simons gauge theories on a space-time manifold D x R, where Dy, is a two-dimensional
disk of radius R, uniquely determine two-dimensional, chiral conformal field theories
on the cylinder 0Dy x R, in an appropriate scaling limit (R — c0).
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