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Near-Optimal Decoding of Transient Stimuli from Coupled
Neuronal Subpopulations
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Coupling between sensory neurons impacts their tuning properties and correlations in their responses. How such coupling affects
sensory representations and ultimately behavior remains unclear. We investigated the role of neuronal coupling during visual processing
using a realistic biophysical model of the vertical system (VS) cell network in the blow fly. These neurons are thought to encode the
horizontal rotation axis during rapid free-flight maneuvers. Experimental findings suggest that neurons of the VS are strongly electrically
coupled, and that several downstream neurons driving motor responses to ego-rotation receive inputs primarily from a small subset of
VS cells. These downstream neurons must decode information about the axis of rotation from a partial readout of the VS population
response. To investigate the role of coupling, we simulated the VS response to a variety of rotating visual scenes and computed optimal
Bayesian estimates from the relevant subset of VS cells. Our analysis shows that coupling leads to near-optimal estimates from a
subpopulation readout. In contrast, coupling between VS cells has no impact on the quality of encoding in the response of the full
population. We conclude that coupling at one level of the fly visual system allows for near-optimal decoding from partial information at
the subsequent, premotor level. Thus, electrical coupling may provide a general mechanism to achieve near-optimal information transfer
from neuronal subpopulations across organisms and modalities.
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Introduction
Flying organisms require fast, reliable feedback regarding ego-
motion. This information is extracted from the optic flow; the
motion of the external world as perceived by the organism (Lee
and Kalmus, 1980; Borst and Bahde, 1988). In the visual system of
the fly, neurons of the lobula plate receive as input a two-
dimensional, retinotopic representation of the optic flow, allow-
ing them to encode rotational and translational velocities (Borst
and Haag, 2002; Borst and Weber, 2011). The lobula plate serves
as a primary relay between early vision and downstream motor
centers (Strausfeld and Bassemir, 1985; Haag et al., 2007; Wertz et
al., 2008).

Approximately 60 large tangential cells responsive to wide-
field motion have been identified within the lobula plate of each
hemisphere of the blow fly (Hengstenberg, 1982; Hausen, 1984).
Ten of these neurons comprise the vertical system (VS) which is

thought to encode the azimuthal direction of rotations in the
horizontal plane (Fig. 1A; Krapp and Hengstenberg, 1996). These
cells were the focus of our study.

The visual information available to the fly is rich, but only part
of it is essential to control flight. The VS cells encode an essential
parameter from this complex input; the horizontal axis of ego-
rotation. Estimating this parameter is a problem of marginaliza-
tion, as the quantity of interest must be disentangled from
irrelevant visual information (Fig. 1B).

Electrical coupling between adjacent VS cells shapes their re-
sponses (Haag and Borst, 2004; Farrow et al., 2005). Our goal was
to examine the impact of coupling on the representation of the
azimuthal angle of rotation in the VS population response. Our
results build on previous qualitative observations about the role
of coupling (Cuntz et al., 2007; Weber et al., 2008; Elyada et al.,
2009).

To examine the role of coupling we presented random rotating
images (Fig. 1C) as input to a biophysically plausible model of the VS
cell network (Borst and Weber, 2011). In contrast to previous stud-
ies, we considered transient responses and applied probabilistic
modeling methods to compute optimal Bayesian estimators from
VS activity instead of using heuristic or suboptimal estimators.

Anatomical and electrophysiological studies of lobula plate
neurons have characterized a pair of premotor neurons at the
next stage of processing of the fly’s nervous system. The strongest
projections of the VS population onto these descending neurons
originate from a subset of the VS population (Wertz et al., 2009a).
When considering such a partial readout, we found that
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coupling-induced changes in tuning, correlations, and reliability
were crucial for an accurate representation of the angle of rota-
tion. Surprisingly, we also found that the quality of the optimal
estimate from the collective response of VS cells does not depend
on coupling strength.

Gap junction coupling between VS cells can thus impact the
accuracy of a subpopulation readout, and hence the fly’s ability to
navigate. Our results suggest that across species and modalities
electrical coupling can distribute information across a neural
population, and significantly increase the performance of esti-
mates extracted from a subpopulation response.

Materials and Methods
Model of the VS network. Our study is based on a model of the VS
tangential cells closely related to that of Borst and Weber (2011). We
briefly describe the model, and note the differences between the spe-
cific implementations. Parameters not explicitly stated, and details of
the model not discussed are identical to those given by Borst and
Weber (2011).

To mimic stimulation of the fly visual system under a variety of con-
ditions, including natural flight, we started by projecting a random image
onto the surface of a sphere. We considered images that consist of ran-
domly arranged bars of varying sizes, as well as random checkerboard
images and compositions of natural scenes. Spherical images were ro-
tated about a horizontal axis with varying azimuthal angle, thereby gen-
erating a pattern of optic flow (Fig. 2A). Details on image and optic flow
stimulus generation are given in the next section.

Processing of these stimuli by the fly visual system is captured by
several successive computational steps. The rotated image sequences
(“optic flow stimuli”) were first filtered by an array of vertically oriented
local motion detectors (LMDs or “Reichardt detectors”; Reichardt, 1987;
Borst et al., 2003; Haag et al., 2004). The LMDs were spaced approxi-
mately evenly on the surface of the sphere. There were 5000 detectors per
hemisphere, corresponding approximately to the number of facets on the
left and right eyes (Hengstenberg, 1992). The input to a single detector
was composed of luminance signals from two vertically aligned pixels
separated by an elevation of 2°. First-order filtered low- and high-pass
versions of the input from the two pixels were cross-multiplied and then
subtracted (Fig. 2B). A negative (respectively positive) detector response
reflected upward (respectively downward) motion. The downward and
upward components were separately weighted according to the dendritic
receptive field (RF) of each cell, and activated the dendritic compartment
of the VS model neurons as excitatory and inhibitory conductances,
respectively. Dendritic RFs were vertically centered Gaussians, with hor-
izontal width 15° and vertical width 60° (Fig. 2C). Hence, each cell effec-
tively sampled the entire vertical surround above and below its RF
center, given in Figure 1A. Maximal vertical velocity within a cell’s RF
was generated by azimuthal rotation angles approximately orthogo-
nal to the centers of the RF. Such rotations therefore resulted in
maximal excitation or inhibition.

The axonal compartments of adjacent, ipsilateral VS neurons are elec-
trically coupled to each other. Figure 2D shows a schematic of the model
processing stages. Figure 2E shows the response of each VS neuron to
downward stimulation in a narrow (10° wide) vertical strip which was
swept across the visual field. The vertical strip contained a square-wave
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Figure 1. The VS network extracts motion parameters from optic flow-related information. A, Left, The 10 VS cells in one lobula plate (LoP) as reconstructed from two-photon image
stacks. Each neuron is T-shaped, with an elongated dendrite sampling a thin vertical stripe in the retinotopically organized LoP (VS 1–10 arranged from distal to proximal in the LoP;
Hengstenberg et al., 1982). Inset, Approximate orientation (a, anterior; p, posterior; l, lateral; m, medial; d, dorsal; v, ventral). Adapted from Cuntz et al. (2007). Right, Connectivity
scheme of the VS network. VS cell axons are electrically coupled to nearest neighbors. There is a functionally mutually inhibitory (or repulsive) interaction between VS1 and VS10. RF
centers indicate azimuthal position in the horizontal equatorial plane of right side VS neurons, taking 0° to represent the anteroposterior axis of the fly. Left, VS neuron RF centers are
given by reflection across 0°. B, The marginalization problem: parameters of ego-motion (such as the axis of rotation, parameterized by �stim) are first probabilistically embedded in the
external world (image), and additional layers of variability (noise) are imposed by the processing in VS cells at the dendritic (De) and axonal (Ax) stages (V� denotes time-averaged
membrane potential; see Materials and Methods). Reading-out the azimuthal rotation axis from the VS population response amounts to marginalization; extracting the posterior
distribution of the stimulus from the axonal responses. C, Example images used to generate the optic flow stimuli presented to the VS network model. Details of image generation are
described in Materials and Methods, along with the procedure for generating the rotational optic flow stimuli.
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horizontal grating with a spatial frequency of 22.5° drifting downward at
a constant velocity of 125°/s, corresponding to a temporal frequency of
5.5 Hz.

The axonal and dendritic membrane potentials for the VS neurons in
each hemisphere evolve according to the following:

Cm

dVAx

dt
� � GAxVAx(t) � gAx-DenVDe(t) � ��Ax

2 �Ax�Ax(t),

Cm

dVDe

dt
� � GDe(t)VDe(t) � gAx-DenVAx(t) � I�t� � ��De

2 �De�De(t).

(1)

Here VAx and VDe are vectors whose entries correspond to the 10 axonal
and dendritic voltages, respectively. The full VS model consists of two
copies of this system, representing the activity of the system in the left and
right hemispheres. The two differ only in their RF centers (Figs. 1A, 2C).
The parameter gAx-Den sets the conductance for the coupling of the ax-
onal and dendritic compartments of each neuron, whereas Cm is the
membrane capacitance and gL,Ax, gL,De are the leak conductances of each
compartment. The membrane time constant of each compartment is:
�X � Cm / gL,X, X � Ax, De. The resting potential of each compartment is
zero. Following a perturbation from rest, the membrane potential decays
exponentially back to the resting potential with a characteristic timescale
�X. Intrinsic variability is modeled by standard white noise processes
�Ax(t), �De(t), and �Ax, �De, set the noise intensities.

The input currents to the dendrite of cell i result in the term Ii(t) �
EEgE,i(t), where gE,i(t) is the excitatory conductance to cell i induced by
the optic flow stimulus, EE is the associated reversal potential, and like-

wise for the inhibitory quantities gI,i(t) and EI. The matrix GDe(t) is
diagonal with entries describing the leak conductance, axonal coupling,
and input currents as follows:

GDe,ii�t� � gL,De � gAx-Den � gE,i�t� � gI,i�t�, i � 1,…10.

The matrix GAx has entries given by:

GAx,ij � �
gL,Ax � gAx-Den � ggap � ginh i � j � 1 or 10,
gL,Ax � gAx-Den � 2ggap 2 	 i � j 	 9,
� ggap i � j � 1 or i � j � 1,
� ginh i � 1, j � 10 or i � 10, j � 1.

(2)

Here, ggap sets the strength of the axo-axonal gap junction coupling be-
tween adjacent, ipsilateral VS neurons. One difference between our sim-
ulation protocol and that of Borst and Weber (2011) is that we generated
visual inputs at time steps of 1 ms, but integrated Equation 1 at a smaller
time step of 0.01 ms to guarantee numerical accuracy. We first calculated
the conductances elicited by the optic flow stimulus at the coarser time
step, then linearly interpolated to obtain a realization of the conductance
at the finer timescale. Typical responses of the uncoupled and coupled
systems to rotation of a random bar image at �stim � 90° are shown in
Figure 3 A, B, respectively. Central to the ability of the VS population to
encode the axis of rotation is the strong, nonlinear dependence of a VS
neuron’s response on the rotational velocity of the visual stimulus within
its RF.
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Figure 2. Schematic of the VS network model. A, Spherical image rotation sequences (red curved arrow) were presented to the model fly VS. The rotation axis in the equatorial plane is
characterized by its azimuth, �stim. Lower right inset shows how the Reichardt detectors were arrayed on the surface of the sphere. B, Schematics of the Reichardt detector. LP and HP indicate first
order low- and high-pass linear filters, respectively, whereas X and � represent elementary signal multiplication and subtraction steps. Each detector was assembled from two subunits separated
by an elevation of 2°. The output of the two subunits, maximally sensitive to downward and upward motion, respectively, were fed separately to model VS cells. C, Horizontal cross-sections of the
dendritic RFs for the VS neurons. The frontmost curve is for the left-side VS10 neuron. Proceeding toward the back, blue-green curves correspond first to the left-side VS neurons (decreasing index),
then the red-orange curves to the right side (increasing index; see also E, inset). D, The model is an assembly of a number of components: the optic flow stimulus is generated by rotations of spherical
images, and is filtered by the LMDs. The LMD output is separated into upward and downward components which are mapped to inhibitory (�), and excitatory (�) conductances, respectively, onto
the dendrites of the VS neurons. Conductances are weighted by the position of the LMD with respect to the VS cell RFs (C). Resistor symbols indicate electrical coupling of compartments, and �Ax,
respectively. �De, are independent, intrinsic noise sources to the axons, respectively dendrites, of VS cells. E, Steady-state membrane potential of the 20 coupled VS neurons (ggap �1 
S) in response
to stimulation by a narrow, 10° wide horizontal grating with constant downward velocity, centered at angle �. The responses were obtained by sweeping the strip 360° around the visual field. Inset,
Color scheme and cell ordering for C and E.
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When we consider the encoding of the rotation axis in the VS axonal
responses, we take the output of the system to be temporal averages of the
axonal membrane potential. For transient responses, the VS output is as
follows:

V� Ax
tr (T) �

1

T�
0

T

VAx(t)dt,

where VAx(0) � VDe(0) � 0,

and T � 10 or 20 ms. (3)

In particular, when considering transient responses, we assume the sys-
tem starts from rest (0 mV) at the beginning of the period over which we
average. Similarly, steady-state responses were computed as follows:

V� Ax
ss (T) �

1

T�
�ss

�ss�T

VAx(t)dt, where �ss � 30 ms. (4)

In contrast to the transient response defined above, the steady-state re-
sponse is defined so that, at the beginning of the integration period (�ss),
the entire VS system is (approximately) in steady-state. Despite the fast
time constants of VS model neurons, they do not immediately reach
steady-state, because it takes some time for the motion detector-filtered
stimulus received by the VS dendrites to equilibrate. In Figure 3, the
shaded boxes indicate the periods over which we calculated the transient
and steady-state responses.

It has been observed that there is a mutually inhibitory interaction
between the end cells (VS1 and VS10) in each hemisphere. This may be
implemented by electrical coupling of VS7–10 to an inhibitory cell Vi
which forms a chemical synapse onto the ipsilateral VS1 cell, and electri-
cal coupling of VS1 to an inhibitory cell Vi2 which forms a chemical
synapse onto the ipsilateral VS10 cell (Haag and Borst, 2007; Borst and
Weber, 2011). Following Weber et al. (2008), we implemented this “re-
pulsive” coupling using a negative-conductance gap-junction between
VS1 and VS10 ( ginh in Eq. 2). This repulsive coupling was scaled when we
changed the strength of axo-axonal gap junction coupling between VS
neurons. Unless otherwise specified, we set ginh � �0.06 ggap. Our find-
ings do not depend qualitatively on the presence of this connection (re-
sults not shown).

For simplicity, we did not model several known functional and ana-
tomical properties of VS cells, such as the rotational structure of their RFs
(Krapp and Hengstenberg, 1996; Krapp et al., 1998) or dendrodendritic
connections with the dCH neuron (Haag and Borst, 2007). These prop-
erties of the VS network are the subject of current experimental investi-
gations (Hopp et al., 2014). Although we do not expect them to
significantly affect our conclusions, investigating the impact of such VS
cell features is an important avenue for future investigation. Previous
computational studies of the VS network have made similar simplifying
assumptions (Karmeier et al., 2005; Cuntz et al., 2007; Weber et al., 2008;
Elyada et al., 2009, 2013).

Generation of images and optic flow patterns.
Optic flow patterns were generated by first pro-
jecting various types of random images onto
the surface of the unit sphere. We considered
three classes of random images: random bars,
random checkerboards, and natural scenes
(Fig. 1C shows examples of each type of image).
In the first two cases, images were binary, pixel
intensities were either 0 or 1, and for natural
scenes, pixel intensities varied continuously
between 0 and 1. All images were discretized at
1° increments in spherical coordinates.
Throughout, images were generated indepen-
dently across trials.

Random bar images were parameterized by
the number of bars, as well as bar width and
length. Each bar was generated by first ran-
domly placing an initial line segment of the

specified bar width on the surface of the unit sphere. We then expanded
this segment along the direction of the length of the bar by rotation about
the appropriate axis, turning “on” all pixels along the path touched by the
rotating segment. Bar images used in Results (see Figs. 5–7) contained 25
bars of length 40° and width 5°. Choosing bars with different dimensions
or changing the number of bars did not affect the results qualitatively
(data not shown).

For checkerboard images, we defined a coarse discretization of the
image consisting of 4° � 4° squares, and randomly set all pixels within a
square to be zero or one, independently across squares. Last, for natural
images, we first took a subcollection of one hundred natural scenes from
the van Hateren and Schilstra (1999) dataset. These images were selected
to exclude man-made objects, sharp edges, and gratings. We then ran-
domly selected six (with replacement) of these 100 images, projected
them onto the sides of a cube, which was itself then projected onto a
sphere, mimicking the approach of Borst and Weber (2011). For natural
scene compositions, we also included an initial rotation of random mag-
nitude about a randomly chosen (not generally horizontal) axis to con-
trol for the effects of edges between different natural scenes. We also
confirmed our results with images chosen randomly from the van Hat-
eren and Schilstra (1999) dataset without restrictions. Results were nearly
identical (data not shown).

The sequences of images comprising optic flow patterns were gener-
ated by rotation of the sphere about an axis in the horizontal plane (we
did not consider translatory motion). At a given positive time, the value
of a pixel was set equal to the value of the pixel obtained by a reversal of
the rotation applied to the original image. The rotational velocity was
constant across simulations and set to 500°/s, falling well within the
parameters of typical motion of the fly during flight (Egelhaaf et al.,
2012). This value is also consistent with values considered in previous
computational studies of the VS network (Karmeier et al., 2005; Cuntz et
al., 2007; Weber et al., 2008; Elyada et al., 2009). Increasing or decreasing
the rotational velocity to 250°/s or 750°/s did not affect the results quan-
titatively, nor change our general conclusions (data not shown).

Optimal linear and zero-crossing estimators. To assess the ability of the
VS cell network to encode the direction of rotation, we considered several
estimators based on the axonal membrane potential of VS cells. In the
following three sections, the reader should keep in mind that the random
vector V� is a surrogate for the time-averaged axonal response of VS cells.
We will define the optimal linear estimator of the rotation axis based on
the steady-state averaged axonal response of VS cells, V� Ax

ss , defined in
Equation 4. In subsequent sections, we will also define the minimum
mean-square estimator (MMSE) using the transient averaged axonal re-
sponse, V� Ax

tr , defined in Equation 3.
For our analysis of the steady-state encoding of the axis of rotation, we

applied an optimal linear estimator (OLE), the linear estimator which
minimizes the expected value of the squared error over all stimuli and
responses (Salinas and Abbott, 1994). We considered a linear, rather than
an affine estimator because of the (near) rotational symmetry of the
system. The OLE is simple and intuitive, and we used it to demonstrate
the impact of gap junction coupling between VS cells. For a more detailed
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analysis we used the MMSE defined in the section entitled “Computation
of the MMSE.”

We are interested in estimating the axis of rotation which is character-
ized by the unit vector, s, pointing along its direction. This vector is in the
horizontal plane of the fly, with azimuthal angle �stim. The OLE is a linear
combination of the responses of the N neurons, V� � (V� 1,…,V� N)T (where
T denotes transposition). To obtain the OLE, we denote the joint prob-
ability density of stimuli and responses by P�V� ,s) � P�V� �s)P�s). We as-
sume throughout the following that the prior distribution over the
stimuli, P(s), is flat. The tuning curve for the i�th neuron is then:


i�s) � E	V� i�s] ��V� iP�V� �s) dV� .

We also set Li � E[s
i�s)] ��s
i�s)P�s) ds, and let L � 	L1�…�LN
 be
the matrix with columns L1,…,LN. We denote the second moment of the
responses of the i�th and j�th neurons (averaged across stimulus values)
by �ij � � V� iV� jP�V� �s)P�s)dsdV� . Given an observed response, V� obs, the
OLE then has the following form:

ŝ � L��1V� obs,

where � is the matrix of second moments, �ij. Note that the OLE
requires measurement of only first and second moments of the re-
sponse. It is thus considerably simpler to obtain than the true MMSE
defined in the next section, which requires knowledge of the full
distribution, P(V� � s). The optimal linear estimator and the MMSE
coincide only when the joint distribution P(V� , s) is Gaussian, which is
not generally true for the system we consider.

The stimulus s estimated by the vector ŝ was a unit vector pointing
along the axis of rotation in the horizontal plane. However, the azimuthal
angle, �stim, of s is the behaviorally relevant variable for optomotor con-
trol by the fly. We therefore report the angle �̂ that the vector ŝ makes
with the direction that the fly is facing, i.e., the azimuthal angle of ŝ, as in
earlier analyses of similar directional stimuli (Georgopoulos et al., 1988;
Salinas and Abbott, 1994; Lewis and Kristan, 1998).

We also implemented an estimator proposed by Cuntz et al. (2007)
and Elyada et al. (2009) who suggested that the axis of rotation can be
defined as a “zero crossing” of the population response. To obtain this
estimator we defined for each cell a “zero angle”. Intuitively, this is the
azimuthal rotation angle that is most likely to elicit no response for a
given cell. Because rotation about the azimuthal angle coinciding with
the center of a VS cell RF will elicit little downward and upward motion
within the RF, the zero angles coincide precisely with the centers of the
RFs shown in Figure 1A. Then, to estimate the “zero crossing” rotation
angle given the response to a rotation about the stimulus angle, �stim, we
search for consecutive pairs of VS neurons which exhibit a sign change in
their responses (i.e., their membrane potential responses lie below and
above their resting values, respectively). These neurons have the smallest
responses to the stimulus, and hence the rotation angle is likely to lay
between their respective zero angles. The axis of rotation is then esti-
mated by linearly interpolating between the two zero angles based on the
responses of these two VS neurons.

More precisely, we define the zero angle of the i�th cell on each side, �i
0,

as the angle that maximizes the likelihood of giving a zero axonal
response:

�i
0 � argmax P��stim�V� Ax,i � 0), where 1 	 i 	 10.

The posterior distribution of the azimuthal angle of the stimulus condi-
tioned on the zero response of a VS cell will generally have two relative
maxima, about 180° apart. To resolve this ambiguity we choose the angle
at which voltage is increasing with increasing �.

To implement the zero-crossing estimator, we first search for a pair of
consecutive VS neurons which exhibit responses V� 1 � 0, V� 2  0 , having
zero angles �1

0, �2
0, where we assume the two cells are labeled so that

�2
0 � �1

0 mod 360� � 	0�, 180��. A sufficient condition for such a pair to
exist is existence of at least one pair of VS neurons exhibiting positive and
negative responses, respectively. Once such a pair is located, the zero-

crossing estimate �est
ZC is the angle associated with the zero potential level

for the line connecting ��1
0,V� 1� and ��2

0,V� 2�,

�est
ZC � �1

0 �
�2

0 � �1
0

V� 2 � V� 1

�0 � V� 1�.

Modeling the joint distribution of VS axonal responses using copulas. For
our analysis of the encoding of the axis of rotation in the transient state,
we applied the true MMSE. Obtaining this estimator of the rotation axis
requires estimating the joint probability distribution of axonal mem-
brane potential of VS cells given the stimulus. However, even with the
benefit of modern computational power, it is not feasible to directly
estimate probability distributions for continuous variates in more than a
few dimensions. For this reason, we must first formulate an approxima-
tion of the joint probability distribution of VS axonal responses to im-
plement the MMSE.

Two approaches to this problem are to fit a maximum entropy
distribution that matches a set of empirical statistics of the data
(Jaynes, 1957; Roudi et al., 2009; Shlens et al., 2009; Ohiorhenuan et
al., 2010; Fairhall et al., 2012), or to apply copulas (Nelsen, 2006). We
chose the latter approach, common in the valuation of financial de-
rivatives, but not widely applied in neuroscience (cf. Berkes et al.,
2009; Onken et al., 2009a,b). One advantage of the copula approach is
that it allows us to use the empirical marginal probability distribu-
tions in the fit.

To fix ideas, we remind the reader that we will fit a copula to the
probability distribution of the time-averaged transient VS axonal re-
sponse, defined in Equation 3. Thus, we consider a random vector
V� � (V� 1,…,V� N)T with cumulative distribution function F�v� 1,…,v� N�.
A copula for the distribution function F is a function C : �N¡� such
that:

F�v� 1,…,v� N� � C�F1�v� 1�,…,FN�v� N��. (5)

Here Fi(�) is the marginal cumulative probability distribution function
for the variable V� i, i � 1, …, N. The copula C exists for any distribution
F with marginals �Fi�i�1

N (cf. Nelsen, 2006, his Theorem 2.10.9). From
Equation 5, it is clear that C determines completely the intervariable
dependence structure contained in the distribution F in terms of the
marginal distributions, Fi.

An N-dimensional copula is equivalent to a distribution function on
the N-dimensional unit hypercube [0,1]N with uniform marginals: de-
fine the random vector U � (U1, …, UN) where Ui � Fi(V� i). The prob-
ability integral transform implies that each Ui is a marginally uniformly
distributed random variable (Gabbiani and Cox, 2010, their Sect. 11.8).
The copula C(u1, …, uN) for V� has an equivalent definition as the distri-
bution function of U.

The “curse of dimensionality” prevents us from directly approximat-
ing the corresponding copula C. A common approach is to select a pa-
rameterized copula family which can then be fit via the maximum
likelihood principle (Yan, 2007). We applied the Gaussian copula (Xue-
Kun Song, 2000), which takes the following form:

C�
Gauss�u1,…,uN� � �����1�u1�,…,��1�uN��. (6)

Here �� is the joint Gaussian distribution function with correlation
matrix and �; (i.e., �ii � 1 for each i) and � is the standard univariate
Gaussian distribution function. Given independent identically distrib-
uted samples of a random vector V� � (V� 1, …, V� N)T with marginals [Fi],
the correlation �ij equals (Bouyé et al., 2000):

�̂ ij � corr	��1�Fi�V� i��, ��1�Fj�V� j��
, 1 	 i, j 	 N. (7)

Here corr(x,y) denotes the correlation coefficient of x and y (Xue-Kun
Song, 2000).

Given a general copula distribution function C as defined in
Equation 5, the copula density is defined as follows:

c�u1,…,uN� �
�

�u1
. . .

�

�uN
C�u1,…uN�.
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The joint density f corresponding to the distribution F may be written as
follows:

f� x1,…, xN� � c�F1� x1�,…,FN� xN���
i�1

N

fi� xi�, (8)

where each fi is the marginal density corresponding to the distribution Fi.
The density of the Gaussian copula may be expressed in closed form as
follows:

c�
Gauss�u1,…,uN� �

1

det(�)
exp[wT���1 � I)w],

w � [��1�u1�,…,��1(uN�]T. (9)

We fit a Gaussian copula to the transient response of the system, V� Ax
tr (T).

To test the goodness of the fit distribution, we selected 20 random subsets
of three left-side VS neurons, and associated with each subset a random
stimulus rotation angle. We then sampled the marginal copula for each
subset [i.e., C(ui, uj, uk) with ui � Fi(V� i) in Eq. 5], comparing it with the
fit copula used in the MMSE calculations using Equations 6 and 7. We
compared the empirically observed and fit copula distribution values at
1000 equally spaced points in the unit cube of the form (0.1i, 0.1j, 0.1k),
1 	 i, j, k 	 10. In Figure 4A, we present a probability-probability (P–P)
plot of the true (empirical) copula values against the fit values. In other
words, letting C true and C fit indicate the true and fit copula distribution
functions, Figure 4 presents a scatter plot of the 1000 points:

��Cfit�0.1i, 0.1j, 0.1k�, Ctrue�0.1i, 0.1j, 0.1k��:1 	 i, j, k 	 10�.

We also computed for each of the 20 subsets and for all 1000 sample points
the relative error between the probabilities from the true and fit copula
distributions. In particular, we defined the following for each point:

�ijk
rel �

�Ctrue�0.1i, 0.1j, 0.1k� � Cfit�0.1i, 0.1j, 0.1k��
Ctrue�0.1i, 0.1j, 0.1k� � Cfit�0.1i, 0.1j, 0.1k�

, 1 	 i, j, k 	 10.

(10)

Because the probabilities lie within [0,1] by definition, the relative errors
also lie within [0,1], with the value 0 indicating a perfect match. In Figure
4B, we plot a histogram of the relative errors for all 20 random subsets
(thus comprising a total of 20,000 data points). We found the true and fit
copula distributions generally agreed quite well. The average relative
error across all 20,000 points was �0.0438, and 90.3% of relative errors
were �0.1.

Computation of the MMSE. To obtain the MMSE (Kay, 1993), we first
simulated the response of the VS network to determine an empirical estimate

of the marginal distribution functions Fi. We did
not assume a parametric form for the marginal
distributions, but obtained a discrete estimate by
binning values of the membrane potential inte-
gral at a sufficiently fine resolution. We then fit
the Gaussian copula to the joint responses. Addi-
tional details are given in the last section of Mate-
rials and Methods.

Both the marginal distributions and the cop-
ula were determined as a function of the stim-
ulus rotation angle �stim at a resolution of 1°.
Marginal distribution histograms were ap-
proximated from 10,000 samples at each rota-
tion angle, and the copula from 1000 samples.
The MMSE was then computed based on 1600
samples taken at 5° increments.

The MMSE of the axis of rotation is calcu-
lated as the mean of the posterior distribution
of the rotation vector given the axonal mem-
brane potentials. To be precise, given an ob-
served response V� Ax

tr (T), we associated each
stimulus angle value �stim with a corresponding
two-dimensional unit rotation vector
s(�stim) � 	cos(�stim), sin(�stim)
T. The esti-

mate, �̂stim
MMSE, was obtained by first computing an estimate of s by averag-

ing over the posterior distribution, i.e.:

ŝMMSE � E[s�V� Ax
tr (T)] �� s(�stim)P��stim�V� Ax

tr (T�)d�stim, (11)

and then reporting the azimuthal angle of this estimate, �̂stim
MMSE � arg ŝMMSE, as

done above for the OLE and zero-crossing estimators. Values of the
posterior density P��stim�V� Ax

tr (T�) were determined using the fit copula
and the measured marginal distributions, along with Equations 8 and 9.
The integral over the posterior density was calculated via simple Ri-
emann integration at a 1° discretization.

In much of the Results we obtain the MMSE from a partial readout of
the VS response. The estimation procedure is the same regardless of the
size of the response vector V� Ax

tr (T). However, we will sometimes use the
notation V� Ax

subpop,tr(T) to emphasize that an estimate is based on the re-
sponse of a subpopulation.

An approximating Ornstein-Uhlenbeck model. Assessing the generality
of our results required determining whether our observations depended
on the details of the model. In addition, we wished to isolate the essential
features governing the modeling results. To do so, we derived a simplified
model that shares the essential characteristics of the full model defined in
Equation 1. The first change was to replace the time-dependent param-
eter GDe(t) by a constant, so that the simplified model became an Orn-
stein–Uhlenbeck (OU) process. Furthermore, we replaced the optic flow
generated input by spatially correlated noise. However, cells retained the
sinusoidal tuning curves of the full model. Finally, the correlations be-
tween the inputs to different cells decayed with the distance between
them to capture the effect of overlapping RFs. In this simplified model,
described by Equation 12, we again changed the magnitude of the diffu-
sive coupling between the cells to examine its impact on encoding.

In form, the corresponding Langevin equations for the evolution of
the coupled OU processes XAx, XDe are similar to those of the full model
(Eq. 1) as follows:

�Ax,OU

dXAx

dt
� � AAxXAx(t) � aAx-DenXDe(t) � ��Ax,OU

2 �Ax,OU�Ax(t),

�De,OU

dXDe

dt
� �(1 � aAx-Den)XDe(t) � aAx-DenXAx(t) � ����

� ��De,OU
2 �De,OUBDe�De(t). (12)

The matrix AAx has entries given by

BA

0 0.05 0.1 0.15

0.25

0.5

0.75

0.25 0.5 0.75 Pfit

Ptrue P(εrel)

εrel

0.1

0.2

Figure 4. Assessing the copula fit for the transient response distribution. A, Blue points give a P–P plot of the fit copula (Pfit,
horizontal axis) against the true, empirical copula (Ptrue) for a randomly selected subset of three left-side VS neurons, at a random
stimulus angle. We computed the copula probabilities at 1000 points, which divided the unit cube into 1000 equal sized subcubes
as described in the text. The black dashed line indicates the diagonal, with agreement between the true and fit models being
indicated by the points lying on or near the diagonal. Optic flow presented to the system was generated by the rotation of random
bar images, and the copula was fit to the transient response distribution. B, Histogram of relative errors (� rel) for copula proba-
bilities. Vertical axis represents fractions of points that lie in the corresponding error range on the horizontal axis. We repeated the
simulation of A, for a total of 20 random pairings of three left-side VS neurons and stimulus angles. We then computed the relative
error (Eq. 10) between the true and fit copula probabilities at the 1000 equally spaced points within the unit cube for all 20 copula
fits, and plotted the errors as a histogram.
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AAx,ij � � 1 � aAx-Den � agap i � j � 1 or 10,
1 � aAx-Den � 2agap 2 	 i � j 	 9,
�agap i � j � 1 or i � j � 1.

Thus, XAx, XDe are 10-dimensional processes, with a copy of the system
for each hemisphere. The two copies are uncoupled, and differ paramet-
rically only in their RF centers, as in the full model. We labeled the
parameters so as to facilitate comparisons with their counterparts in the
full model. For example, the parameter agap captures the coupling be-
tween neighboring compartments in the OU model, and corresponds to
the parameter ggap in the full model.

The tuning curves, �(�) in Equation 12, describe the steady-state re-
sponse in the absence of fluctuations. To approximate the steady-state
responses of the full system, we defined individual tuning curves as sinu-
soids, 
i(�) � sin(� � i), where i indicates the RF center of the i�th cell.
Therefore, a cell will respond most strongly to stimulation angles orthog-
onal to the cell’s RF center, as in the detailed VS model (Fig. 2E). We
again obtained estimators from the time integrals of the cell’s responses.
In Equation 12, the last term in the equation for XDe modeled the corre-
lated input to the dendrites. The matrix BDe was chosen so that correla-
tions to neighboring dendritic compartments decayed exponentially
with a space constant of 10°: if �� was the shorter angular distance
between the RFs of two neurons, the correlations between the inputs to
the two was exp(���/10°).

In Figure 12, we used the following parameters: �Ax,OU � 0.2,
�De,OU � 40, aAx-Den � 1, �Ax,OU � �De,OU � 0.2. RF centers, i, agreed
with the full model. The window of integration for responses was T � 10
units of dimensionless time. The coupling strength agap varied, and val-
ues used are indicated in the legend of Figure 12.

Generation of figures. In all figures, to generate a single sample from the
true distribution of the VS model axonal response we first used Equation
1 to model the response of the VS model to random optic flow stimuli.
We then computed for each individual simulation the corresponding
temporal average (Eqs. 3, 4) to obtain a single sample from the response
distribution.

To compute the approximate minimum mean-square estimate used to
generate Figure 10 and similar figures, we first had to approximate the
joint distribution of V� Ax

tr , the transient averaged VS axonal responses. We
did so in two steps: we first estimated the marginal distribution for each
V� Ax,i

tr by generating samples as described above and binning at a suffi-
ciently fine resolution. For checkerboard and bar images, we generally
binned over the interval [�8 mV, 8 mV] at a resolution of 0.038 mV (420
bins). For natural scenes, where responses were weaker, we generally
binned over the interval [�1 mV, 1 mV] at a resolution of 0.0048 mV
(420 bins). We verified that bin sizes were small enough so that the results
did not change with a further decrease in bin size (results not shown). We
determined the marginal histograms at a 1° resolution, for each different
time window considered. The histograms were approximated using
10,000 data points at each rotation angle. Given this large sample of
realizations of the random vector V� i, the values Fi(V� i) were approximated
by applying a rank transformation (Berg, 2009).

In the second step, we fit the Gaussian copula, also by generating
samples directly from the model. The correlation matrix, which pa-
rameterizes the Gaussian copula, was determined using Equation 7.
As with the histograms, we fit the copula at each angle at a 1° resolu-
tion and for each different time window considered. We fit the copula
to 1000 samples generated independently from those used to fit the
histograms.

With these approximations of the true histograms and maximum like-
lihood estimates of the parameters for the fit of the Gaussian copula, we
drew 1600 new samples from the true model, at a spatial resolution of 5°
for �stim. For each sample, we computed the approximate MMSE. By
averaging across these samples at each value of �stim, we obtained esti-
mates of the relation between �stim and the mean-square error of the
MMSE, as plotted on the left of each panel in Figure 10 and similar
figures. The averaged mean-square error shown in the bar plots on the
right of each panel in Figure 10 was obtained by averaging these data over
all values of �stim. The averaged mean-square error calculated for each
subset in Figure 9 was determined likewise.

Given the intensive nature of the simulations involved in obtaining
even a single data point in these figures, all computations had to be
performed on supercomputer clusters. For instance, the sum of all
computations performed to generate a single curve in the left panel of
Figure 10A amounted to 2000 CPU hours on 2.2 GHz AMD Barce-
lona processors. The computer code necessary to implement the VS
cell system is deposited in the ModelDB repository (accessible at
http://senselab.med.yale.edu/modeldb).

Results
Neurons of the VS in the fly respond to visual input, and encode
information about the horizontal axis of ego-rotation (Fig. 1).
This information is used by cells downstream from the VS system
to control flight. We studied how the azimuth of the angle of body
rotation is encoded in the response of the VS neuronal network
using the model schematically depicted in Figure 2.

Presently, it is not known how downstream neurons read out
information from the VS response. However, physiological evi-
dence suggests that only a few VS cells form connections with
specific downstream premotor neurons (Haag et al., 2007; Wertz
et al., 2008, 2009a,b). We therefore explored the encoding of the
axis of ego-rotation in the response of a subset of VS cells, by
asking what is the best possible estimate of the rotation angle that
can be obtained from a partial readout of the VS response? To
answer this question, we computed the best estimate (the mini-
mum mean-square estimate or “ideal estimate” from here on)
that can be obtained from partial, subpopulation readouts. We
found that electrical coupling substantially decreases the error of
this estimate. We explain this observation by examining the
coupling-induced changes in tuning curves, variability, and cor-
relations of the VS cell population. Surprisingly, we found that
coupling has no effect on estimates obtained from a full VS pop-
ulation readout, an observation we go on to explain mathemati-
cally. Finally, we validate the generality of these findings using a
simplified and abstracted model of the VS network.

Encoding of the azimuthal rotation angle in the VS response
We examined the response of the VS system to a variety of visual
stimuli. To simulate the environment surrounding a fly, we first
projected images onto the surface of a sphere centered at the fly.
The sphere was rotated clockwise about a horizontal axis with
azimuthal angle �stim, thus generating a pattern of optic flow (Fig.
2A). In each trial, we recorded the response of the model VS
network to the optic flow generated from a single, random image.
Across trials, we used different, randomly generated images: ran-
dom bars, random checkerboards, and various compositions of
natural scenes (see Materials and Methods). We show that, al-
though there were quantitive differences in the VS responses, our
results and conclusions hold for all image classes.

Based on our current knowledge of the fly visual system, the
optic flow stimulus was filtered by an array of local motion
(Reichardt) detectors (Reichardt, 1987; Borst et al., 2003; Fig.
2B). These detectors functionally separated the stimulus into up-
ward and downward motion components which were summed
according to the retinotopic RF of each neuron (Fig. 2C). These
signals formed the input to the dendrites of the VS neurons
and downward (respectively upward) motion elicited a tran-
sient increase in the excitatory (respectively inhibitory) con-
ductance. The magnitude of this conductance change
depended nonlinearly on the local rotational velocity. Figure
2D provides a schematic of the model.

In the fly, the VS neurons are arranged in a one-dimensional
array with adjacent, ipsilateral cells coupled via axo-axonal gap
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junctions (Fig. 2D, far right). The steady-state response of the
model network to downward motion in a narrow vertical strip is
shown in Figure 2E. Input to one VS cell can impact the axonal
response of other cells in the network because of coupling. Thus
the “effective” axonal RFs of VS cells are much wider than the
dendritic RFs displayed in Figure 2C. Hence, coupling allows the
VS neurons to pool the responses of their neighbors (Cuntz et al.,
2007; Elyada et al., 2009). Our goal was to understand the effect of
such coupling on the encoding of the azimuth of the axis of
ego-rotation in the VS population response.

Transient encoding of the axis of rotation in a VS subpopulation
During cruising flight in a stationary environment, flies often
move along straight-line segments separated by saccadic periods
of rapid rotation. These straight-flight segments occur at rates up
to 10 per second and may be as short as 30 ms in duration (Schil-
stra and van Hateren, 1999; van Hateren and Schilstra, 1999;
Boeddeker and Egelhaaf, 2005). Because motor projections of the
VS network must pass through intermediate descending neurons
(Strausfeld and Bassemir, 1985; Haag et al., 2007; Wertz et al.,
2008, 2009a,b), the representation of ego-rotations for compen-
satory optomotor responses must take place at an even shorter
timescale. Similarly, short timescales are likely critical during
other natural flying behaviors, such as pursuit and tracking (Land
and Collett, 1974; Collett and Land, 1975).

To understand the role of coupling in the VS network we
examine its impact on the information available to downstream
neurons that are involved in flight control. In particular, we focus

on a pair of prominent premotor de-
scending neurons that has been identified
within each brain hemisphere. These de-
scending neurons of the ocellar and verti-
cal system (DNOVS) form gap junctions
with subsets of the VS cells, and directly
innervate motor neurons in the thoracic
ganglion of the fly (Haag et al., 2007;
Wertz et al., 2008, 2009a,b). DNOVS1 and
DNOVS2 couple electrically to ipsilateral
VS neurons, with the strongest coupling
to the VS6 –7 and VS5– 6 neurons, respec-
tively. The response of these downstream
neurons is determined by temporal filter-
ing of the graded response of the VS pop-
ulation rather than instantaneous values
of their membrane potentials. We there-
fore considered time-averaged integrals of
the transient response beginning from
rest. We denote the vector of these aver-
aged axonal responses by V� Ax

tr (T) (Eq. 3;
Fig. 3), where T denotes the length of the
integration window and the “tr” super-
script indicates the transient state of the
system.

The VS response encodes information
about the ego-rotation axis parameterized
by its azimuthal angle, �stim. We asked,
“What is the best possible estimate of the
rotation axis obtainable from the re-
sponse of neurons that provide input to
the DNOVS cells?” We therefore com-
puted the estimator that minimizes mean-
square error (the ideal estimate) based on
the response of the VS5–7 neurons from
each hemisphere, and report the corre-

sponding azimuthal angle, �̂stim
MMSE, as described by Equation 11.

Computation of �̂stim
MMSE relies on an average taken over the poste-

rior distribution of the stimulus, given the subpopulation VS
response, P��stim�V� Ax

subpop,tr(T�). The vector V� Ax
subpop,tr(T) has six

components corresponding to three cells, VS5–7, in two hemi-
spheres. Later we consider readouts from larger subpopulations,
and hence response vectors with more components.

Our model VS network is complex, and it is not obvious how
to parametrize the likelihood P��stim�V� Ax

subpop,tr(T�). As a result,
Equation 11 cannot be evaluated via Markov Chain Monte Carlo
methods, or other techniques designed for efficient sampling
from probability distributions (Robert and Casella, 2004). We
therefore simulated the model directly to estimate the likelihood,
and then computed the integral in Equation 11 after using copu-
las to approximate the multivariate distribution of the responses
(see Materials and Methods for details; Fig. 4 illustrates the qual-
ity of the copula approximation).

The ideal estimate gives the best possible estimate of the axis of
rotation from the responses of a VS subpopulation, V� Ax

subpop,tr(T).
Therefore, the mean squared error of any other estimate com-
puted by a downstream population with access to the same VS
subpopulation must equal or exceed that of the ideal estimate.
Although we do not know how the output of the VS system is
decoded, our results provide limits on the performance of any
postsynaptic decoder.
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Figure 5. The effect of coupling on VS neuronal dynamics. A, Left, Typical axonal response of the left-side VS10 cell in the
uncoupled network ( ggap � 0 
S) to rotations of bar images about �stim � 90°. Different line types indicate different, randomly
generated images. Right, Same as Left, but for the coupled system ( ggap � 1 
S). Images rotated to generate optic flow stimuli
were the same ones used in the uncoupled system, with matching line types indicating matching image presentations. B, Corre-
lations for the integrated membrane potential in steady-state for the left-side VS neurons. Values above (respectively below) the
diagonal are for the uncoupled (respectively coupled) system. Nearby cells were correlated at levels of �0.7 and 0.97 for the
uncoupled and coupled systems, respectively. C, Steady-state tuning curve (mean response) and variability as a function of rotation
angle for (Ci) VS1 and (Cii) VS10 in the uncoupled system. Shaded areas indicate �1 SD of the response distribution. D, Same as C,
but for the coupled system. All responses and statistics in this figure were generated in the absence of intrinsic fluctuations (�Ax,
�De � 0). Stimuli were created by rotations of random bar images (see Materials and Methods).
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Dynamical effects of coupling on VS network responses
Even in the absence of internal variability, the axis of rotation
cannot be decoded perfectly from the VS response. Each visual
scene consists of a different arrangement of edges and other fea-
tures. Thus different scenes rotating about the same axis, result in
different VS responses. If the parameter of interest, �stim, is fixed
across a set of trials, we refer to the differences in the VS responses
as overall trial-to-trial fluctuations. Such fluctuations can be due
to variability in visual scenes (external variability), or noise gen-
erated internally, but the origin of overall trial-to-trial fluctua-
tions is irrelevant when estimating the axis of rotation from a VS
readout.

We illustrate this point in Figure 5 which shows the responses
of the VS system to different random bar images. Each image
contained the same number of bars of equal shape. However,
their arrangement differed from image to image. Even in the
absence of intrinsic fluctuations (i.e., �Ax � �De � 0), this re-
sulted in different VS responses when the images were rotated
about the same axis (Fig. 5A).

Electrical coupling between VS cells can significantly reduce
such overall trial-to-trial fluctuations. Figure 5A shows the effect
of coupling using five typical responses of the left-side VS10 neu-
ron to rotations of random bar images about �stim � 90° with
(left) and without (right) axo-axonal gap junction coupling.

We define the overall trial-to-trial covariability in the VS cell
responses as the correlation coefficient computed over trials with
different visual scenes, but fixed �stim. Figure 5B shows the sample
(Pearson) correlation coefficient between pairs of VS membrane
potentials averaged over the window labeled SS in Figure 5A. As
expected, correlations increase with coupling. However, even in
the absence of coupling, the overlap in the RFs of the different VS
cells results in strong correlations between neighboring cells.

Figure 5C,D shows how steady-state tuning curves (mean re-
sponses as a function of �stim and response variability are affected
by coupling. In addition to reducing variability, coupling allows
the VS neurons to interpolate their responses (Cuntz et al., 2007;
Elyada et al., 2009), and increase their orientation coverage (Graf

et al., 2011): when coupled to its neighbors, each cell exhibits a
graded response to an increased range of stimulus angles. This
effect can also be observed by comparing the dendritic RFs in
Figure 2C with the much broader axonal responses in Figure 2E.
Notably, such smoothing takes place without a significant de-
crease in tuning curve amplitude.

Effect of coupling on VS5–7 subpopulation encoding
What is the impact of coupling on the quality with which the
VS5–7 neurons encodes the axis of rotation? The effects described
in the previous section point to a potential trade-off: coupling
could improve encoding by extending the range of tuning curves,
and reducing response variability. On the other hand, increased
correlations can decrease the fidelity of a parameter estimate.
Whether and to what extent this is the case depends on the spe-
cifics of the system (Barlow, 1961; Panzeri et al., 1999; Averbeck
et al., 2006; Shamir and Sompolinsky, 2006; Ecker et al., 2011;
Latham and Roudi, 2011).

We examined the impact of coupling on estimating the rota-
tion axis by computing its ideal estimate from a partial readout of
the transient VS response to different images and a variable inte-
gration time. As shown in Figure 6, coupling greatly increases the
accuracy of the estimate obtained from the responses of VS neu-
rons 5–7. Even moderate levels of coupling resulted in a strongly
reduced mean squared error of the estimate �̂stim

MMSE regardless of
integration window and type of image presented (Fig. 6, bar
charts). We will show that the situation is very different for a full
population readout, where the mean-square error of the ideal
estimate is largely independent of coupling.

Factors determining partial decoding improvement
How does coupling improve decoding? To address this question,
we next investigated whether improved estimation of the axis of
rotation from the VS5–7 subpopulation is due to changes in in-
dividual cell responses. For instance, can changes to tuning
curves and the reduction in variability observed in Figure 5C,D
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explain the improvements in encoding accuracy in Figure 6? Al-
ternatively, can the improvements be explained by changes in the
joint response of the VS neurons, such as increases in correlated
variability (Fig. 5B)?

To obtain a full picture of the factors governing decoding
performance, we also investigated how population-level encod-
ing of the axis of rotation depends on the dimensionality of the
response: how does a readout from multiple cells receiving dis-
tinct dendritic input compare with a readout from a single cell
linearly integrating the same dendritic responses? Finally, we
asked how the readout from different subpopulations is impacted
by coupling.

Overall trial-to-trial covariability versus tuning curve smoothing
To examine the impact of overall trial-to-trial covariability on the
error of the optimal subpopulation decoder, we shuffled the
responses of each VS neuron across trials, separately for the un-
coupled and coupled systems. Specifically, the decorrelated
(shuffled) responses were obtained by drawing independently,
for each fixed �stim, from the set of responses used in Figure 6.
This allowed us to maintain the features of the single neuron
response to the stimulus (the tuning curve shape), while remov-
ing overall trial-to-trial covariability. In the coupled case, overall
trial-to-trial covariability includes both stimulus-induced and
coupling-induced correlations, whereas in the uncoupled case it
consists only in stimulus-induced correlations.

Removing overall trial-to-trial covariability produced a sur-
rogate VS response distribution that differed from the true one.
Using this “incorrect” distribution therefore also resulted in a
different posterior distribution over the angle �stim, resulting in
increased ideal estimate error. The magnitude of this increase
tells us how important overall trial-to-trial correlations are for
the ideal estimate.

As noted previously, coupling also smooths the tuning curves
and increases coverage. We can compare the ideal estimate obtained
in the absence of coupling without shuffling to the ideal estimate
obtained with coupling and shuffling. Because overall trial-to-trial
covariability is ignored in the second case, any reduction in error is
due to changes in the responses of individual cells.

We present the mean-square error of the ideal estimate before
and after shuffling in Figure 7. The left plot shows the error as a
function of the axis of rotation for two coupling strengths, for

trial-shuffled and the original data. The bar chart to the right
presents the estimation error for the uncoupled and coupled sys-
tems, with and without trial-shuffling.

The response of the VS system is more strongly correlated in
the presence of coupling. Therefore shuffling has a stronger effect
on the response distribution, and performance of the ideal esti-
mate suffers more when VS cells are coupled. In Figure 7 the
difference between the dashed blue bar and the solid orange bar
characterizes the impact of tuning curve smoothing due to cou-
pling. The difference in performance between the solid and
dashed orange bars characterizes the impact of overall trial-to-
trial correlations. Thus, we see that approximately half of the
improvement in mean-square error for the subpopulation read-
out was accounted for by the changes to tuning and the other half
by correlated variability: changes in the marginal statistics of the
response and changes in the correlation structure were of nearly
equal importance.

Role of axonal filtering
The VS response is part of a hierarchy of signal processing steps,
as shown in Figure 2D. In particular, the axonal system receives
input from the dendritic system, which itself has a retinotopic RF
structure, and also encodes the axis of rotation in its response. We
have shown that coupling allows for a more accurate estimate
from a subpopulation of the VS cells. However, if only a subset of
the VS responses is used by an estimator, why are there 10 cells
instead of a single cell with a spatially extended dendrite?

To answer this question, we simulated the system with only a
single cell (axon) in each hemisphere which received input from
all 10 dendrites, and left the dendritic structure unchanged. In
this case, the axonal response within each hemisphere is univar-
iate and evolves according to the following (compare with Eq. 1):

Cm

dVAx

dt
� � �gL,Ax � 10gAx-Den)VAx(t�

� 10gAx-Den� 1

10	i�1

10

VDe,i(t)
 � ��Ax
2 �Ax�Ax(t). (13)

This is equivalent to assuming that a single axonal compartment
couples to a single dendritic compartment evolving as the average
of the 10 dendritic compartments in the full model.
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Figure 8. A single cell with a spatially extended dendrite cannot accurately encode the axis
of rotation. Left, Solid orange line indicates the square root of the MSE of the MMSE for transient
responses to filtered optic flow stimuli generated by the rotation of random bar images with a
T � 10 ms window of integration, for the full system with a partial readout consisting of the
VS5–7 cells in each hemisphere (same data as Fig. 6A). The dashed orange line was obtained
with the same system as the solid line, with readout from only cell VS5. The dashed blue line
indicates the mean-square error for a system consisting of a single axonal compartment in each
hemisphere which couples to all 10 of the corresponding dendritic compartments, as described
in the text. Right, Bars represent the square root of the stimulus averaged MSE for the systems
and readouts shown on the left.
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Figure 7. Correlations encode stimulus information in a partial readout. Left, Solid lines
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optic flow stimuli generated by the rotation of random bar images with a T � 10 ms window of
integration. Line colors correspond to different coupling strengths indicated (see insets).
Dashed lines indicate the error of the partial readout without shuffling for the same strengths of
coupling (same data as Fig. 6A). The partial readout was formed from the responses of the
VS5–7 cells on each side. Right, Solid border bars represent the square root of the stimulus
averaged mean-square error for the cross-trial shuffled data plotted to the left, with bar colors
corresponding to line colors. Dashed border bars indicate the same, but for the nonshuffled data
(as in Fig. 6).
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Figure 8 shows that replacing 10 cells
by one has a strong negative impact on
stimulus encoding. Here we compare the
error of the ideal estimate for the single
axon system to that of the full, coupled
system with a partial readout consisting of
the VS5–7 cells (Fig. 6). The average error
of the ideal estimate in the full system is
smaller by over a factor of four (Fig. 8,
right, compare the solid orange and the
dashed blue bars), and the error is reduced
by up to a factor of eight at specific stim-
ulation angles (Fig. 8, left).

Thus, multiple cells with differing tun-
ing curves improve the performance of
the ideal estimate, even when coupling in-
creases overall trial-to-trial correlations
between cells. The improvement is partly
due to the additional dimensions available
when reading out the VS5–7 responses,
compared with a readout from a single compartment. However,
this is not all: we compared the performance of the ideal estimate
for the single axon system to that of the full, coupled system, with
a readout from only the VS5 cell. The coupled system is again
superior to the single axon system (Fig. 8, compare the dashed
orange and the dashed blue lines). Hence averaging the responses
of all dendritic inputs notably degrades ideal estimate perfor-
mance. Although electrical coupling introduces correlations, re-
sponses of the individual VS cells are not identical. A balance
between a coupling that allows for the integration of information
in a subpopulation, and a distinct response between different VS
cells seems best for stimulus encoding in a subpopulation. These
results hold for passive dendrites; it is an open question whether
a single axon system with active dendrites could perform better.

Partial readout subset size and VS cell identity
We asked to what extent our results depend on the particular subset
of the VS population used to compute the ideal estimate. Would it
matter if the DNOVS cells received input from a different subset of
VS cells? To answer this question we randomly selected 20 distinct
readouts of sizes up to five (except for readouts of size one, of which
there are only 10 possible choices). For readouts from three cells, we
ensured that the set VS5–7 (the readout considered in Fig. 6) was
included. For each of the chosen readouts, we computed the mean-
square error averaged across all values of �stim.

The results are presented in Figure 9. The mean-square error
for the coupled network (Fig. 9B) decreases rapidly with the size
of the readout subpopulation. Improvements are marginal be-
yond two cells. Strikingly, beyond one-cell readouts, there is very
little dependence on the particular subset of VS cells on which the
estimate is based. In contrast, the average mean-square error
across readouts does not decrease as rapidly for the uncoupled
network. In this case, the mean-square error also depends
strongly on the identity of cells in the particular subset. Although
the average mean-square error for the uncoupled and coupled
network are close for readouts from three or more cells, the error
for the “worst” readout is far larger in the uncoupled case.

Despite similarities in membrane and RF properties across the
VS cells, we observed a large variance in the error depending on
cell identity when reading out only a single neuron VS response,
for both the uncoupled and coupled network. This variability can
be attributed to the unequal coverage of stimulus space by the VS
RFs, combined with the particular structure of interneuronal

coupling. The large variability in the error for readouts from
multiple uncoupled cells is due partly to the narrow tuning
curves. Uncoupled neurons that are physically close do not com-
municated with other VS cells. Therefore, the collective “orien-
tation coverage” of uncoupled neighboring cells is lower than for
nonadjacent neurons. For such groups of neurons, a larger range
of rotation axes will be poorly encoded. In the coupled system,
the story is different: when considering a readout from at least
two VS neurons from each hemisphere, the identity of the cells is
not important. Coupling among VS neurons brings about a de-
gree of “information democracy” in which any pair of neurons
carries roughly equal information about the axis of rotation.

Overall, coupling was uniformly beneficial to the fidelity of
encoding of the axis of rotation in the axonal response. Strikingly,
however, the error for the readout of the VS5–7 cells was highest
among all tested readouts for both the coupled and uncoupled
system. Two key factors contributed to this result: first, single-cell
readouts of each of these neurons yielded a larger error than
single-cell readouts from other VS neurons (results not shown).
In addition, these three cells are physically close, and thus lead to
larger estimation errors. This phenomenon is closely linked to
observations of changes in orientation coverage with population
size recently reported in pools of orientation selective cortical
neurons used to discriminate sinusoidal gratings drifting in dif-
ferent directions (Graf et al., 2011). Thus, if biological constraints
dictate that the rotation angle be estimated primarily from the
response of the VS5–7 neurons, coupling of the VS axonal re-
sponses becomes of great importance (Fig. 6).

Comparing the trends of the mean-square error in Figure 9 in
the absence (Fig. 9A) and presence (Fig. 9B) of coupling suggests
that coupling has a diminishing effect as subpopulation size in-
creases. We next examine this observation further.

Estimation of the axis of rotation from the full
population response
We have shown that coupling significantly improves estimates
from a partial readout of the VS response. How does coupling
affect a readout from the entire VS population?

The performance of the ideal estimate for the angle of rotation
estimated from the integrated axonal potentials of the full VS
population is shown in Figure 10. The error of the ideal estimate
depended on image statistics, but surprisingly, it was approxi-
mately independent of coupling strength.
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Figure 9. Encoding accuracy depends on cell identities for a partial readout. A, The solid line shows the square root of the
average MSE of the MMSE calculated from transient responses in the uncoupled system. Input to the system consisted of filtered
optic flow stimuli generated by the rotation of random bar images with a T �10 ms window of integration. The mean-square error
was averaged across 20 randomly chosen subsets for each readout subset size. For readouts from a single cell, we could only
consider 10 readouts, corresponding to the 10 VS cells. Dashed lines indicate the maximum and minimum values of the MSE
observed across the randomly chosen subsets. For size three readouts, we ensured that we included the subset consisting of VS5–7
(the same subset used in Figs. 6), and the filled circle indicates the MSE for this subset. Note the logarithmic scale of the vertical axis.
B, Same as A, but for the coupled system.
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As shown in Figure 5, coupling has a strong effect on correla-
tions and tuning curves, and decreases the error of the ideal esti-
mate obtained from a partial readout. It is therefore surprising
that the same changes in tuning curves and correlations have no
effect on the error of the ideal estimate obtained from the full
population response. To understand this difference, we first ap-
ply the OLE to steady-state VS responses (see Materials and
Methods). Although less general than the ideal estimate, the OLE
is easier to analyze. We show that the insights obtained from the
OLE in steady-state carry over to the ideal estimate both in
steady-state and transient states.

The mean-square error of the OLE is independent of coupling
in steady-state
We defined the steady-state response of the system of VS cells
using averages of the graded responses of the VS population,
V� Ax

ss (T) (Eq. 4). Here T indicates the time window of integration
and the superscript “ss” indicates that the system is in steady-
state. We then computed the OLE based on V� Ax

ss (T).
The mean-square error of the OLE as a function of �stim is

shown in Figure 11, for three types of images and two integration
time windows: across image types and integration time windows,
the mean-square error of the OLE in steady-state was also inde-
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pendent of the strength of axo-axonal coupling. The statistics of
the optic flow generated by images from a given class set the
baseline level for the mean-square error. However, the error was
independent of coupling strength for all classes of images tested.
We also verified this for different parameters of the random bar
images (results not shown; see Materials and Methods for details
of image generation).

Explanation of coupling-independence
We first note that since the axonal and dendritic compartments
were coupled electrically, the dendritic response was affected by
the strength of the axo-axonal coupling. However, the impact of
coupling on the vector VDe(t) of dendritic responses was limited
to a multiplication of the response by a diagonal matrix (result
not shown). Except for this scaling, the time course of the den-
dritic response is dominated by the synaptic input arriving
through the visual pathway, which reflects the response to the
filtered optic flow stimulus. Therefore, to a good approximation,
the system may be viewed as hierarchical (Elyada et al., 2009): the
motion detector-filtered optic flow stimulus drives the dendrites,
and the dendrites drive the axonal compartments, with the activ-
ity at each step determined completely by the response at the
preceding stage (along with any intrinsic noise sources).

As we show next, a consequence of this observation is that the
vector of average axonal responses V� Ax

ss (T), is linearly related to
the vector of average dendritic responses V� De

ss (T). The specific
relation between the two vectors changes with coupling. How-
ever, because the relation is linear, the axonal and the dendritic
response will give the same estimate of the axis of rotation, re-
gardless of coupling. We next make these intuitive observations
more precise.

Disregarding intrinsic noise in the system, we have

V� Ax
ss (T) �

1

T�
0

T

ds VAx(s)

�
1

T�
0

T

ds�
0

�

du H�u�VDe(s � u)

�D��
0

�

ds H(s)
�1

T�
0

T

ds VDe(s)

� �V� De

ss (T), where � ��
0

�

ds H�s�. (14)

Here, 'D indicates equality in distribution, and
H�s� � Cm

�1gAx-Denexp[�Cm
�1GAxs]��s� is the exponential filter

the axonal system applies to the dendritic response. We note that
at positive times, when the Heaviside function �(s) � 1, H(s) is a
matrix exponential. That the axonal response can be represented
by a convolution of a matrix exponential with the dendritic re-
sponse (second equality), is a general mathematical property of
linear systems of differential equations such as those which de-
scribe the evolution of VAx (Eq. 1).

The equality in distribution in Equation 14 arises from switch-
ing the order of integration and using the time-shift invariance of
the dendritic membrane potential distribution under the steady-
state assumption. In this case the distributions of VDe(s � u) and
VDe(s) agree for all finite u, and the two quantities can be ex-
changed under an equality in distribution. The dendritic av-

erage V� De
ss (T) is defined analogously to the axonal quantity in

Equation 4.
Equation 14 shows that, under the hierarchical assumption,

the axonal activity is conditionally independent of the input given
the dendritic activity: if the linear relation between axonal and
dendritic responses is invertible, the posterior distribution of the
stimulus given the axonal response agrees exactly with the distri-
bution conditioned on the dendritic response. In other words,
because V� Ax

ss (T) �D�V� De
ss (T) for some invertible matrix H, it fol-

lows that:

P��stim�V� Ax
ss (T�) � P��stim�V� De

ss (T�). (15)

In this situation, there is no change in information about the
rotation angle due to coupling. This equality holds as long as H is
invertible. Realistic gap junction coupling strengths change the
entries in the matrix H, but do not impact its invertibility.

We found that the dendritic responses were independent of
coupling up to an invertible linear scaling factor, implying that
the posterior distribution P��stim�V� De

ss (T�) is likewise independent
of coupling. Thus, not only will the performance of the OLE be
unaffected by coupling in this case, but the same conclusion holds
for more general probabilistic estimators (including the ideal es-
timate we consider next, all Bayesian estimators and the maxi-
mum likelihood estimator).

Independence of the ideal estimate on coupling in the
transient state
The explanation of why the ideal estimate error is independent of
coupling in the transient state is largely identical to that provided
in the steady-state case (Eq. 14), with one crucial difference: the
equality in distribution on the third line of Equation 14 does not
hold exactly for transient responses. A priori it is not obvious that
the equality should hold even approximately. However, if the
axonal responses are fast then the equality will hold to a good
approximation: intuitively, a fast response means that the axonal
filter, H(u) is not negligible only for u close to 0. Because the
dendritic voltage changes are relatively slow, VDe(s � u) � VDe(s)
is nearly independent of u.

More precisely, the characteristic response timescales of the
VS axonal compartments (and of the system filter H) are given as
the product of the membrane capacitances with the inverses of
the eigenvalues of GAx. If these eigenvalues are large enough, the
equality in distribution in Equation 14 does hold nearly exactly
because of a separation of the timescale of the axonal response
from that of the output integration window. In this case, there
again exists an invertible linear relationship between the transient
axonal average V� Ax

tr (T) and the corresponding dendritic average
V� De

tr (T).
The VS axonal compartments have baseline time constants on

the order of a millisecond (Borst and Weber, 2011). The effective
time constants will thus be even smaller, because of the axo-
dendritic and axo-axonal gap junction synapses (Rudolph and
Destexhe, 2003). These short integration time constants allow the
system to reliably implement a linear transfer from the dendritic
to the axonal averages for transient responses, as in Equation 14.
To verify this, we performed linear regression analysis of the
dependence between the axonal and dendritic responses. We
found R 2 values for individual coordinates were 0.999 for all
coupling values (ggap � 0, 0.5, 1 
S) and integration time win-
dows tested (T � 10, 20 ms) when the intensity of intrinsic noise
was set to zero (results not shown). This indicates that transfer is
nearly linear in each axonal dimension. The linear regression was
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performed for random values of �stim, indicating the indepen-
dence of this transfer matrix from the stimulus value.

In short, the axonal network uses a very fast system filter to
institute a highly reliable linear transfer of the averaged transient
dendritic response to the average transient axonal response. As in
the steady-state case, the entries of the transfer matrix depend on
coupling, but its existence and invertibility do not. Hence, the
posterior distribution of the stimulus conditioned on the axonal
response is nearly identical to that conditioned on the dendritic
response (Eq. 15), and the latter is approximately independent of
coupling (Elyada et al., 2009). As a result, the estimates (and
error) of any probabilistic estimators will not depend signifi-
cantly on the strength of the axo-axonal gap junction coupling
within the VS system.

Coupling improves partial decoding in a simplified model
We next asked whether our conclusions depended on the details
of the model fly visual system we used in our simulations, the
statistics of the images presented, or other choices we made in our
analysis. For this purpose, we examined whether similar conclu-
sions can be obtained in a simplified, analytically tractable ap-
proximation of the full VS model (see Materials and Methods). In
this simple OU system we discarded the Reichardt detectors, and
the complex visual input used in the full model. Instead, the input
to the system was white noise, which was correlated in space to
model VS cells’ RF overlap.

The 10 dendritic and 10 axonal compartments were modeled
by linear differential equations which shared two essential char-
acteristics with the full model. First, we assigned the dendritic
compartments tuning curves (i.e., mean responses in the absence
of fluctuations) which were sinusoidal functions of the stimulus
angle to emulate the retinotopic response properties of the VS
neurons. Second, the axonal compartments were diffusively
coupled.

In this model, we emulated the relatively slow timescale of the
dendritic input arriving to the axon terminals, by assigning the
dendritic compartments a time constant which was an order of
magnitude larger than that of the axonal compartments. Details
of the model are given in Materials and Methods.

In this setting, we qualitatively replicated our earlier findings:
the performance of the ideal estimate obtained from a partial
readout of the axonal responses increased with coupling. With a
readout from the entire population, performance was indepen-
dent of coupling (Fig. 12). We did not tune the model, and the
result held over a wide range for all parameters (results not
shown).

Discussion
Organisms need to rapidly extract information about ego-
motion from complex patterns of optic flow (Fig. 1C). We used a
simplified, but biophysically realistic model of the fly VS to ex-
amine the role of electrical coupling in encoding the azimuthal
axis of ego-rotation. We have shown that this parameter can be
quickly and accurately extracted from the transient response of a
VS subnetwork.

The impact of coupling and correlations on encoding in neu-
ronal populations has been studied extensively (for review, see
Averbeck et al., 2006). Interestingly, we found that coupling did
not affect the error of optimal estimates from complete popula-
tion responses. The posterior distribution over the azimuthal an-
gle of rotation was unaffected by coupling. Hence, Bayesian or
maximum-likelihood estimators were similarly unaffected.

Physiological evidence suggests that part of the VS network

drives the response of two of its postsynaptic neurons. The
DNOVS 1 and 2 are efferent targets of VS cells projecting to
thoracic ganglia where they contact neck motor neurons involved
in head stabilization during flight (Haag et al., 2007; Wertz et al.,
2008, 2009a). Each DNOVS neuron is most strongly coupled to
two VS cells, and the DNOVS pair is coupled predominantly to a
subset of three VS neurons in each hemisphere.

Coupling between VS cells significantly improved encoding
accuracy of the rotation angle in the response of this VS subpop-
ulation. For this partial readout, the transfer from dendritic to
axonal membrane potential is approximately linear, but not in-
vertible. Hence, the performance of the estimator depends on
coupling. The dynamical changes induced by coupling resulted in
a subpopulation readout that could be as accurate as a full pop-
ulation readout. Coupling had the greatest impact on the readout
from VS5–7 and postdendritic processing enabled by the cou-
pling of distinct axonal compartments was crucial to encoding
accuracy. These results are robust and general: model details,
such as image features and integration timescales, had only a
quantitative impact.

Based on these results, we can make concrete predictions that
can be tested experimentally. These predictions rely on the ability
to ablate a single VS cell that does not provide direct input to
DNOVS neurons, or block its gap junctions. Under such condi-
tions, the decoding of rotation axes from postsynaptic DNOVS
neurons should be differentially affected, depending on which VS
cells the rotations preferentially stimulate. If such specific silenc-
ing of a VS neuron were possible in the intact animal, we predict
a similar differential effect on behaviors controlled by DNOVS
neurons.

The fly visual system is an established model for the study of
optimal motion encoding and decoding (Laughlin, 1981; Bialek
et al., 1991; van Hateren, 1992; Gabbiani and Koch, 1996; de
Ruyter van Steveninck and Laughlin, 1996; Fairhall et al., 2001).
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with bar colors corresponding to line colors. B, Same as A, but for a partial readout formed from
the responses of the cells index 5, 6, and 7 on each side, imitating the partial readout considered
in the full system (Fig. 6).
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To the best of our knowledge, our work is the first to examine the
impact of electrical coupling on optimal population coding by
using a mathematical and computational analysis of the response
of a detailed model of the VS network (Borst and Weber, 2011).
Previous arguments about the benefit of coupling were primarily
heuristic (Elyada et al., 2009), and generally concerned steady-
state responses (Cuntz et al., 2007; Weber et al., 2008). By con-
sidering dominant eigenmodes, Weber et al. (2008) showed that
coupling leads to a reliable, lower dimensional representation of
VS activity. Rotation about a given azimuthal axis results in de-
polarization of the VS cells located to one side of the axis, and
hyperpolarization in the cells located on the opposite side. This
prompted Cuntz et al. (2007) and Elyada et al. (2009) to propose
estimating the axis of rotation by interpolating the responses of
the VS cells, and finding a zero-crossing in the mapping between
these responses and the VS cells’ preferred axes of rotation. Cou-
pling reduces response variability, and hence the error of this
estimate.

When we implemented such a zero-crossing estimator (see
Materials and Methods) and compared it to the ideal estimate, we
found it to be suboptimal. The estimator usually struggled to
achieve reasonable encoding accuracy when presented with nat-
ural scenes. Responses to natural scenes were weaker than those
induced by the other image types we considered, and the zero-
crossing estimator is very susceptible to noise. Furthermore, cou-
pling could either improve or degrade the estimates, depending
on image statistics. The zero crossing estimator from a subpopu-
lation response performed even worse, producing errors several
times that of the ideal estimate.

Furthermore, it is unclear how the zero-crossing and other
proposed suboptimal estimators could be implemented down-
stream from the VS cells. In contrast, the ideal estimate estab-
lishes a baseline for the performance of any estimator. Although
suboptimal estimators may be affected by coupling in different
ways, we found consistent results for the ideal estimate across
stimulus conditions. Although neuronal networks may not pro-
cess information optimally (Loeb, 2012), evidence for approxi-
mate optimality exists both at the behavioral and neural level
(Ernst and Banks, 2002; Fetsch et al., 2012). We used optimal
estimators as an operational benchmark, revealing the potential
capabilities of the system under realistic assumptions.

Two studies are conceptually close to our work: Karmeier et al.
(2005) took a Bayesian approach to quantify the encoding effi-
ciency of the axis of rotation in the VS population response. They
also proposed time integrals of the VS membrane potentials as
readout variables, and examined the impact of population size on
encoding in the VS population. We note several important dif-
ferences: Karmeier et al. (2005) did not investigate the effect of VS
coupling, instead focusing on the effects of integration time and
input correlations. Furthermore, they used a phenomenological
model, in contrast to our biophysically plausible model. More
recently, Weber et al. (2012) applied generalized linear models to
assess the benefits of coupling between two optic flow-
processing, spiking neurons of the lobula plate (H1 and Vi) for
conveying information about optic flow parameters.

We found that changes in correlation structure were impor-
tant in improving encoding accuracy in the case of a subpopula-
tion readout (Fig. 7). These findings contrast with typical
arguments about the benefit and harm of trial-to-trial correla-
tions (Tkačik et al., 2010). Correlations between VS neurons
carry information about the responses of unobserved neurons.
Electrical synapses are both strong and fast in their effect on
subthreshold dynamics relative to their chemical counterparts

(Xiao et al., 2013). They are therefore well suited for increasing
the coverage of a parameter, reducing variability, and introduc-
ing correlations.

Many previous theoretical studies examined how changes in
neuronal response statistics, such as correlations or tuning
curves, impact coding (Barlow, 1961; Sompolinsky et al., 2001;
Seriès et al., 2004; Averbeck et al., 2006; Josić et al., 2009; Ecker et
al., 2011; Latham and Roudi, 2011). This can give valuable in-
sights into how coding is affected by aspects of the neural popu-
lation response. However, correlations and tuning curves are not
intrinsic properties of a population response that can be changed
arbitrarily (Shea-Brown et al., 2008; Beck et al., 2012). To exam-
ine how the statistics of neuronal activity affect coding, it is there-
fore important to consider realistic networks with realistic inputs.

A key advantage of our approach is that we made no a priori
assumptions about the VS population response. In particular, we
made no assumptions about how the joint activity of VS neurons
encodes the axis of rotation. Rather, we considered the responses
of a biophysically realistic model to various stimuli. The spatio-
temporal structure of the input, and the properties of the VS
network fully determined its responses, allowing us to character-
ize the best estimate of the stimulus available to the animal (Graf
et al., 2011).

Our results open a number of avenues for future research: we
used temporal averages as a readout of the VS population re-
sponses. However, downstream DNOVS neurons are not perfect
integrators. DNOVS 2 is a spiking neuron, introducing a strong
nonlinearity into the processing pathway. Further, the effect of
interactions with other neurons of the lobula plate should be
investigated (Borst and Weber, 2011). We also did not attempt to
examine the impact of correlations beyond second order. Appli-
cation of maximum-entropy approaches could help address this
topic (Jaynes, 1957).

The aerial performance of flies is unmatched in nature and
technology (Frye and Dickinson, 2001). Understanding how a
small set of neurons in the fly removes irrelevant variability to
extract behaviorally relevant information can provide insight
into the implementations in more complex organisms.

Our results in the fly VS network are suggestive of a general
principle: coupling between neurons allows for near-optimal
readouts from a subpopulation. Correlations between the re-
sponses introduced by coupling can lead to information democ-
racy, where even small subpopulations carry nearly as much
information about the stimulus as the entire population. In a
neuronal network that encodes a behaviorally relevant parame-
ter, coupling can thus allow each neuron to represent a greater
extent of the parameter space. When downstream targets extract
information about this parameter from relatively few neuronal
projections, correlations between responses can be highly bene-
ficial (Stevenson et al., 2012). Although details of our study are
particular to the fly visual system, the main ideas are likely to
apply across organisms and modalities.
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