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In most sensory systems, higher order central neurons extract
those stimulus features from the sensory periphery that are
behaviorally relevant (e.g., Marr, 1982; Heiligenberg, 1991). Re-
cent studies have quantified the time-varying information car-
ried by spike trains of sensory neurons in various systems using
stimulus estimation methods (Bialek et al., 1991; Wessel et al.,
1996). Here, we address the question of how this information is
transferred from the sensory neuron level to higher order neu-
rons across multiple sensory maps by using the electrosensory
system in weakly electric fish as a model. To determine how
electric field amplitude modulations are temporally encoded
and processed at two subsequent stages of the amplitude
coding pathway, we recorded the responses of P-type afferents
and E- and I-type pyramidal cells in the electrosensory lateral
line lobe (ELL) to random distortions of a mimic of the fish’s own
electric field. Cells in two of the three somatotopically organized
ELL maps were studied (centromedial and lateral) (Maler, 1979;

Carr and Maler, 1986). Linear and second order nonlinear stim-
ulus estimation methods indicated that in contrast to
P-receptor afferents, pyramidal cells did not reliably encode
time-varying information about any function of the stimulus
obtained by linear filtering and half-wave rectification. Two
pattern classifiers were applied to discriminate stimulus wave-
forms preceding the occurrence or nonoccurrence of pyramidal
cell spikes in response to the stimulus. These signal-detection
methods revealed that pyramidal cells reliably encoded the
presence of upstrokes and downstrokes in random amplitude
modulations by short bursts of spikes. Furthermore, among the
different cell types in the ELL, I-type pyramidal cells in the
centromedial map performed a better pattern-recognition task
than those in the lateral map and than E-type pyramidal cells in
either map.
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Any comprehensive characterization of sensory information pro-
cessing by neuronal networks has to rely on a wide range of
experimental and theoretical approaches (Reichardt and Poggio,
1976; Marr, 1982; Koch, 1998). Knowledge of the anatomy of
sensory pathways and of the microstructure of neuronal circuits as
well as of electrophysiological response properties of single neu-
rons and their involvement in behavior are required (Heiligen-
berg, 1991). In addition, a quantitative understanding of the
encoding and processing of sensory information in single and
multiple neuronal spike trains is also needed. Information theo-
retical approaches and methods drawn from statistical signal
processing have long been applied to examine the latter aspects
(Marmarelis and Naka, 1972; Marmarelis and McCann, 1973).
However, in many cases, the functional and behavioral signifi-
cance of such studies remained unclear. Because the electrosen-
sory system is relatively simply structured and the role of its
circuitry in processing behaviorally relevant signals across multi-
ple parallel sensory pathways is well known, it represents an ideal
model to investigate, in a quantitative manner, the computational

mechanisms underlying the encoding and processing of sensory
information at the single neuron and network level (Konishi,
1991).

Weakly electric fish generate electric fields for the active de-
tection of objects and for communication (for review, see Heili-
genberg, 1991; Bastian, 1994; Metzner and Viete, 1996a,b). In
Eigenmannia, electric signals that follow an almost sinusoidal
time course are produced by continuous discharges of an electric
organ at a rate between 150 and 600 Hz. Two types of electro-
receptors exist to monitor electric fields: low-frequency ampullary
and high-frequency tuberous (Zakon, 1986; Heiligenberg, 1993).
Tuberous electroreceptors and their associated primary afferents
are tuned to the dominant spectral frequency range of the ani-
mal’s own electric organ discharge (EOD) and consist of two
subclasses. T-type afferents fire phase-locked to the zero-
crossings of the EOD waveform. P-type afferents, on the other
hand, fire intermittently, with highly fluctuating response laten-
cies, and they encode changes in the electric field amplitude
(Scheich et al., 1973; Bastian and Heiligenberg, 1980; Bastian,
1981a, 1986b; Wessel et al., 1996).

All electroreceptor afferents terminate in the electrosensory
lateral line lobe (ELL) of the hindbrain in a somatotopic manner.
The ELL consists of four mediolaterally adjacent segments or
“maps” (Fig. 1). The medial segment receives input from ampul-
lary afferents, whereas the three remaining segments (centrome-
dial, centrolateral, and lateral) are each innervated by one collat-
eral of tuberous afferents (Heiligenberg and Dye, 1982; Carr and
Maler, 1986). Tuberous afferents excite basilar pyramidal cells
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directly and inhibit nonbasilar pyramidal cells indirectly via gran-
ule cells. Thus, an increased firing rate in a P-type afferent,
reflecting a rise in stimulus amplitude, will excite a basilar (E-
type) pyramidal cell and inhibit a nonbasilar (I-type) pyramidal
cell (Bastian and Heiligenberg, 1980; Saunders and Bastian,
1984).

Several computational mechanisms for the transfer of electric
field amplitude information were suggested from the mean re-
sponse characteristics of pyramidal cells. For instance, pyramidal
cells may combine half-wave rectification with transmission of
time-varying information on temporal changes in the stimulus
waveform (such as the first derivative of the electric field ampli-
tude modulation) (Enger and Szabo, 1965; Bastian 1986b). Alter-
natively, they might convey time-varying information on specific
frequency ranges contained in the amplitude modulations of the
stimulus (Maler, 1989; Rose and Call, 1992, 1993; Fortune and
Rose, 1997). The aim of the present study was to test these
hypotheses and determine how amplitude modulations are tem-
porally encoded and processed between the first two stages in the
segregated pathways (Metzner and Juranek, 1997) of the elec-
trosensory system.

A short report of parts of our results has been published
previously (Gabbiani et al., 1996).

MATERIALS AND METHODS
Preparation. Thirty-five adult specimens of Eigenmannia species from 12
to 20 cm body length were used in this study. The fish had either been
bred and raised in the laboratory or were purchased from a tropical fish
wholesaler (Bailey’s, San Diego, CA). They were immobilized by intra-

muscular injection of Flaxedil (,5 mg/gm body weight) (gallamine trie-
thiodide; Sigma, St. Louis, MO), gently suspended in the center of the
experimental aquarium (water conductivity, 90–110 mS/cm, pH 7; tem-
perature, 26–28°C) by a foam-lined forceps with only the dorsal surface
of their head protruding above the water surface, and respirated with a
stream of aquarium water via a silicone-coated glass tube inserted in
their mouth. A small plexiglass rod was glued to the parietal bone under
local anesthesia (2% lidocaine; Western Medical Supplies, Arcadia, CA)
to further stabilize the fish. The experimental tank was situated on a
vibration isolation table (Newport, Fountain Valley, CA). Although
Flaxedil strongly attenuated the fish’s EOD, residual signals (amplitude,
50 mV to 1 mV) locked to the spinal command neurons could still be
monitored with a suction electrode fitted over the tip of the tail. Cura-
rization reduced the EOD amplitude below the threshold level of elec-
troreceptors. The electrosensory system was stimulated using an EOD
mimic consisting of a sinusoidal stimulus (S1) that was applied between
an electrode in the mouth and an electrode near the tip of the tail and is
described in more detail below.

Electrophysiology. For recordings of receptor afferents, the posterior
branch of the anterior lateral line nerve just rostral to the operculum was
exposed. This allowed us to record extracellularly the activity of single
P-type electroreceptor afferents. For intracellular recordings from pyra-
midal cells, the ELL was reached by removing part of the occipital bone
overlying the caudal cerebellum (;3 mm 2) under local anesthesia (lido-
caine). Intracellular signals were recorded with glass micropipettes filled
with 3 M KCl (resistance, 40–60 MV for extracellular and 70–130 MV
for intracellular recordings; borosilicate glass was pulled on a Sutter P-87
(Flaming-Brown, Novato, CA). Penetrations were obtained by applying
brief overcompensation of capacitance neutralization or slight mechan-
ical tapping of the headstage and of the microdrive or both. Cell mem-
brane potentials were sometimes stabilized during data acquisition by
passage of a weak, hyperpolarizing current (corresponding to a hyper-
polarization of the membrane potential of ;5 mV). Recording signals
were amplified with an intracellular electrometer (World Precision In-

Figure 1. A, Frontal section through the hindbrain (right half) of Eigenmannia showing the four segments, or maps, of the electrosensory lateral line
lobe (ELL). MS, Medial (ampullary) segment; three tuberous segments: CMS, centromedial, CLS, centrolateral, LS, lateral; Cer, cerebellum, VIII,
octavolateral nerve (containing the electrosensory afferents); layers of the tuberous ELL segments: dnl, deep neuropil layer (contains collaterals of
electrosensory afferents), sl, spherical cell layer (contains phase coding cells; serves as landmark), gl, granule cell layer (contains inhibitory interneurons),
pl, pyramidal cell layer (contains E- and I-units shown in B), ml, molecular layer (contains apical dendrites of pyramidal cells). B, Camera lucida drawings
of an E-type (top) and I-type (bottom) pyramidal cells that were labeled intracellularly with neurobiotin.
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struments, WPI 767, Sarasota, FL) and stored on a video tape using a
PCM recording adapter (sample rate, 40 kHz; Vetter 3000A, Rebers-
burg, PA). They were subsequently converted from analog to digital using
a commercial data analysis system (sample rate, 2 or 4 kHz/channel;
Datawave, Denver, CO).

Anatomy. The ELL is highly laminated (Fig. 1), and the somata of
large pyramidal cells are situated in a central layer that extends dorso-
ventrally over a distance of 200 mm. GABAergic polymorphic cells and
few small pyramidal cells are found in the ventral region of this pyrami-
dal cell layer and appear to make only intrinsic connections within the
ELL (Bastian et al., 1993; Maler and Mugnaini, 1994). We recorded only
from the large pyramidal cells of the centromedial (CMS) and lateral
(LS) segments that are situated in the central pyramidal cell layer and
project to higher order structures. This layer can be identified easily by
anatomical and physiological criteria. For instance, the center of the
pyramidal cell layer is located ;200 mm dorsal to the spherical cell layer,
which is only ;100 mm thick and physiologically very distinct. Spherical
cells are innervated by T-receptor afferents and fire, in contrast to
pyramidal cells, strictly phase-locked to the EOD mimic even at the low
stimulus amplitudes used in this study. This very reliable landmark
allowed us to limit data collection to the pyramidal cell layer and in some
cases to the molecular layer that contains the large apical dendritic trees
of pyramidal cells (Carr and Maler, 1986). Pyramidal cell activity was
recorded with electrodes filled with neurobiotin (2% in 3 M KCl) (Vector
Laboratories, Eugene, OR) for intracellular labeling (Metzner and Hei-
ligenberg, 1991; Heiligenberg et al., 1996). In all cases, the subsequent
histological analysis revealed label in pyramidal cells only (Fig. 1). If no
intracellular labeling could be performed, the recording site was histo-
logically verified by setting electrolytic lesions at the conclusion of the
experiment using a high-frequency current (Hyfrecator 733; Bircher
Medical Systems, Irvine, CA) (bipolar setting at 15 W for 10 sec)
(Metzner, 1993). The current was applied through a low-impedance
recording electrode (,20 MV) positioned at the most lateral (in the case
of the centromedial ELL segment) and most medial recordings (in the
case of the lateral ELL segment) at the depth of the pyramidal cell layer.
The fish was euthanized with MS-222 (tricaine-methane sulfonate;
Sigma) and perfused with 4% paraformaldehyde in 0.1 M phosphate
buffer. Brains were post-fixed overnight and then cut on a vibratome in
sections of 50 mm thickness. Sections were mounted, dehydrated, coun-
terstained with neutral red or cresyl violet (Nissl stain), and coverslipped.
The nomenclature of brain structures used for the light-microscopic
analysis follows Maler et al. (1991).

Stimulation protocols. The stimulus presentation followed the conven-
tion described in Wessel et al. (1996). Briefly, the voltage V(t) of the
electric field mimic had a mean amplitude A0 and a carrier frequency
fcarrier and was modulated randomly (random amplitude modulations,
RAMs) according to V(t) 5 A0 [1 1 s(t)] cos (2p fcarrier t). The carrier
frequency was set at the fish’s electric organ frequency before immobi-
lization and was above 350 Hz in all fish used for our experiments. The
mean amplitude A0 took values between 1 and 5 mV/cm near and
perpendicular to the head of the fish. The stimulus s(t) had a flat power
spectrum up to a cut-off frequency, fc , which in the present study was
varied between 2 and 40 Hz. This white noise was generated by playing
a blank tape on a tape recorder [bandwidth, DC to 10 kHz, signal-to-
noise ratio (SNR) 5 50 dB; Racal Instruments, UK], which was subse-
quently filtered by a flat-amplitude, low-pass filter (two four-pole But-
terworth filters in series; Wavetek Rockland 452, San Diego, CA). The
SD, s, of the stimulus was varied between 0.1 and 0.45 V, corresponding
to variations between 10 and 45% of the mean electric field amplitude.
This range of values was slightly higher than the one used in Wessel et al.
(1996) and led to more reliable responses in pyramidal cells. For the
lower range of cut-off frequencies, fc , used in this study as compared with
Wessel et al. (1996), A(t) 5 A0 [1 1 s(t)] remained positive up to s 5 0.45
V, i.e., no phase changes were introduced in the voltage V(t) relative to
the carrier signal cos(2p fcarrier t).

At the beginning of each recording, the response of the cell to sinu-
soidal amplitude modulations between 2 and 10 Hz of a stimulus with a
carrier frequency similar to the animal’s own EOD frequency was deter-
mined. This allowed us to easily classify the cell as E- or I-unit (Metzner
and Heiligenberg, 1991). Subsequently, the response of the cell to RAMs
was tested. Each stimulus configuration was presented for 2.5 min.
Various stimulus configurations were tested by changing the parameters
fc , A0 , and s pseudorandomly between stimulus presentations, as time
permitted. At least three configurations were required to include a cell

recording into our data base. The maximum time we recorded intracel-
lularly from a pyramidal cell was 101 min.

Spike train analysis. To study the spontaneous activity of pyramidal
cells, the spike peak occurrence times were selected and resampled at 2
kHz. Interspike interval (ISI) distributions, including means and coeffi-
cients of variation (CVs), autocorrelation functions, power spectra, and
variance versus mean spike count curves were computed using standard
methods, as described in Gabbiani and Koch (1998). The analysis of
stimulus-driven activity was also performed on spike occurrence times
and stimuli initially digitized at 2 kHz. For very low stimulus cut-off
frequencies (#5 Hz), the sampling rate was divided by a factor of 4, and
the recording time was multiplied by the same factor, to improve tem-
poral averaging at the expense of spectral frequency resolution.

Linear stimulus estimation. Linear estimation of the stimulus from the
spike trains of pyramidal cells and P-receptor afferents was performed
and quantified as described in detail in Wessel et al. (1996) and Gabbiani
and Koch (1998, Sec 9.7). Briefly, the autocorrelation function of the
spike train and the cross-correlation with the stimulus were computed
and used to obtain a Wiener–Kolmogorov filter that was then convolved
with the spike train, yielding an optimal linear estimate of the stimulus in
the mean square sense (Gabbiani and Koch, 1998). The accuracy of this
stimulus estimation method and of the one described in the following
paragraph were assessed by computing the root mean square error, e,
between the estimate and the stimulus. The coding fraction was then
defined from the root mean square error, e, and the SD, s, of the stimulus
as g 5 1 2 e/s. The coding fraction takes the maximum value of 1 when
the stimulus is perfectly estimated (e 5 0) and the minimum value of 0
when estimation is at chance level (e 5 s) (Gabbiani and Koch, 1996).
Thus, the coding fraction g provides an objective estimate of the time-
varying information encoded in a neuronal spike train, as assessed by an
ideal observer. The accuracy of stimulus estimations was further char-
acterized in the frequency domain by computing signal-to-noise ratios
(SNRs) as a function of stimulus frequency (see Fig. 6). A value of 1 for
SNR( f ) at a given frequency, f, means that estimation of this particular
frequency is at chance level, whereas perfect estimation corresponds to
an infinite SNR (Gabbiani and Koch, 1996). In addition to the stimulus
itself, three linear and non-linear functions of the stimulus were esti-
mated by the same method. These included, after subtraction of the
mean stimulus, first, positively and negatively half-wave rectified stimuli;
second, the temporal derivative of the stimulus; and third, positively and
negatively half-wave rectified temporal derivatives. Temporal derivatives
were computed by linear convolution of the stimuli with a digital differ-
entiation filter. To suppress the amplification of high-frequency noise
inherent to such a numerical computation, the differentiation filter was
convolved with a carefully selected Kaiser window, as explained in
Hamming (1989, Sec 9.7) and Oppenheim and Schaffer (1989).

Nonlinear stimulus estimation. The (half-wave-rectified) stimulus and
its (half-wave-rectified) temporal derivative were also estimated from the
spike trains of pyramidal cells by a quadratic algorithm, which took
possible nonlinear interactions in the encoding of detailed time-course
information into account that could have taken place between two spike
occurrence times. The implementation used a straightforward modifica-
tion of the fast orthogonal method described in Korenberg (1988).
Because of the computational burden of such general quadratic algo-
rithms (Koh and Powers, 1985), the stimuli and spike trains were first
resampled with a resolution of 20 msec, corresponding to a sample rate
of 50 Hz. This sampling rate was sufficient to resolve the time-course of
stimuli with a cut-off frequency below 25 Hz (see Fig. 6B, C). During the
resampling of pyramidal cell spike trains, two spikes occurring in the
same 20 msec bin were replaced by a single event of doubled amplitude
{i.e., d(t 2 t1 ) 1 d(t 2 t2 )3 2 d(t 2 t3 ) for t1 , t2 in [t3 2 10 msec; t3 1
10 msec], where d(t 2 ti ) represents the occurrence of a spike at ti , i 5
1, 2, 3}. The down-sampling allowed us to use linear and quadratic filters
of manageable size (31 and 31 3 31 elements, respectively) to cover the
time windows of interest (6300 msec around each spike). Linear esti-
mation of the stimulus from resampled pyramidal spike trains were first
compared with those obtained at a sampling rate of 2 kHz. The estima-
tion filters and the fraction of the stimulus encoded that were obtained
with these two methods were identical, indicating that temporal modu-
lations in the instantaneous firing rate of pyramidal cells below 20 msec
did not carry substantial information about the stimulus time-course. In
contrast, stimulus estimations from 50 Hz down-sampled P-receptor
afferent spike trains were substantially worse than those obtained at a 2
kHz sampling rate, indicating that modulations in the instantaneous
firing rate of P-receptor afferents at time scales shorter than 20 msec
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carried substantial information. Therefore, quadratic estimation methods
were not pursued further with P-receptor afferent spike trains.

Feature extraction. We assessed the ability of pyramidal cell and
P-receptor spikes to convey information about the presence of temporal
features, such as up- and downstrokes in random modulations of the
electric field amplitude, by discriminating stimulus waveforms preceding
the occurrence or nonoccurrence of spikes in response to the stimulus by
using two pattern classifiers (Fisher and Euclidian, respectively). In the
following, we will first explain how the stimulus waveforms were obtained
and then describe how the two classifiers were defined and how the
classification error characterizing their performance was computed.

Each spike train and the corresponding stimulus s(t) were binned using
three bin sizes between Dt 5 0.5 msec (corresponding to the sampling
rate of 2 kHz for the spike occurrence times) and a maximal bin size
Dtmax. The maximal bin size was determined from the requirement that
no more than one spike should fall in a given bin. In general, this
requirement was slightly alleviated by the fact that in ,1.8% of all spike
occurrences, two spikes were allowed to fall in the same bin. This
accounted for the rare occurrence of exceptionally close spikes and for an
unfavorable placement of the bins with respect to the spike train. For
spikes of pyramidal cells, Dt ranged between 3 and 15 msec, whereas for
P-receptor afferents Dt ranged from 0.5 to 4.5 msec because of their
higher firing rates (see Fig. 7A). The wave-form of the RAM that
preceded the bin [t 2 Dt;t] was defined as the 101 dimensional stimulus
vector st 5 (s(t 2 100 Dt), . . ., s(t)), and the variable lt took the value 1
or 0 depending on whether a spike occurred in the bin [t 2 Dt;t]. Let P
(s u l 5 1) and P(s u l 5 0) be the two distributions of stimulus vectors
conditioned on the occurrence or nonoccurrence of a spike in a bin of
size Dt. The collection of stimulus vectors belonging to these distribu-
tions was determined from the experimental data by considering succes-

sively each time point t 5 n Dt for n ranging from 101 to the largest
integer smaller than T/Dt, with T being the duration over which one
particular stimulus configuration was presented (see above; usually, T 5
140 sec). Each vector st was assigned to P(s u l 5 1) or to P(s u l 5 0)
according to whether (lt 5 1) or not (lt 5 0) a spike occurred in the bin
[t 2 Dt;t] (Fig. 2).

The separation of the distributions P(s u l 5 0) and P(s u l 5 1) in
stimulus space was assessed by the ability of a statistical pattern classifier
to discriminate among them. Consider a linear classifier of the form:

hf,u~s! 5 fT z s 2 u, (1)

where the dot denotes matrix multiplication and the notation xT for a
vector x denotes the transposed vector, obtained by exchanging the rows
and columns of x. According to Equation 1, for a fixed feature vector f
and threshold u, a stimulus s is classified as belonging to class 1 (i.e., the
class of stimuli eliciting a spike) or class 0 (i.e., the class of stimuli
eliciting no spike) by projecting s onto f and comparing the value of the
projection to the threshold u. If f Tzs is larger than threshold [correspond-
ing to hf,u(s) . 0], then s is assigned to class 1; otherwise s is assigned to
class 0.

Fisher classifier. The performance of the classifier of Equation 1 relies
on an appropriate choice of the feature vector f and the threshold u. The
optimal feature vector f was determined by maximizing Fisher’s linear
discriminant function. Let m0 and m1 be the mean values of the condi-
tional distributions P(s u l 5 0) and P(s u l 5 1), respectively, and denote
by S0 and S1 the corresponding covariances:

S i 5 ^~s 2 m i! z ~s 2 m i!
T& i , (2)

Figure 2. Schematization of the data analysis performed for the feature extraction method. Center panel, Each stimulus and spike train was subdivided
into short bins (labeled a–r) containing at most one spike. The collection of stimuli preceding each bin was separated into two distributions, P(s u l 5
1) and P(s u l 5 0), according to whether a spike occurred in the corresponding bin (c, d, g, j, k , m, q, r) or not (a, b, e, f, h, i, l, n–p). In the example depicted
here, spikes occur preferentially after a RAM upstroke (as for E-type pyramidal cells). The separation of the two distributions and, thus, the ability of
spikes to reliably convey the presence of an upstroke was then assessed using a linear classifier. Side boxes, Means m0 (lef t, top graph) and m1 (right, top
graph) of the stimulus preceding no spike occurrence (lef t box) and the occurrence of a spike (right box) for an E-unit in the CMS as well as the covariance
matrices, S0 (lef t, bottom graph) and S1 (right, bottom graph) characterizing the second order variations of P(s u l 5 0) and P(s u l 5 1) around m0 and
m1 (stimulus parameters: A0 5 3.0 mV/cm, fc 5 44 Hz, s 5 0.32 V; bin size Dt 5 3.5 msec). Note the difference in scale between the two top panels.
Because our stimuli are stationary and zero mean, the means m0 and m1 are related according to p0m0 1 p1m1 5 0 (with p1 5 probability of a spike in
bin Dt, and p0 5 probability of no spike occurrence in bin Dt).
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where the average ^z&i is over the distribution P(s u l 5 i), i 5 0, 1 (Figs.
2, 4 A–D). The covariance matrices defined in Equation 2 characterize to
a first approximation the variances and the correlations among the
components of the stimulus vector s for the two classes i 5 0, 1. Estimates
of m0 , m1 , S0 , and S1 were obtained using maximum likelihood estima-
tors. The feature vector f used to separate the distributions P(s u l 5 i),
i 5 0, 1 was obtained by maximizing the signal-to-noise ratio:

SNR~f! 5
@fT z ~m1 2 m0!#

2

fT z S1
2S0 1

1
2S1D z f

. (3)

This function constrains only the direction of f in stimulus space because
it is independent of the magnitude of f: SNR(af ) 5 SNR(f ) for a Þ 0.
Therefore, to obtain the optimal direction for f it is sufficient to maxi-
mize SNR(f ) over a subset of vectors having constant norm, as explained
in the next paragraph. To clarify the significance of maximizing the
signal-to-noise ratio of Equation 3, let us denote by P(f Tzs u l 5 1) and
P(f Tzs u l 5 0) the two one-dimensional distributions of stimuli projected
onto f (Fig. 3). Their means, mi , and variances, si

2, are given by:

m i 5 ^fT z s& i 5 fT z m i , (4)

si
2 5 ^@fT z ~s 2 m i!#@~s 2 m i!

T z f#& i 5 fT z S i z f, (5)

for i 5 0, 1. Therefore, the numerator of Equation 3 is the squared
distance between these means, (m1 2 m0 )2, whereas the denominator is
equal to 1/2(s0

2 1 s1
2). Thus, Equation 3 selects an optimal direction in

stimulus space by attempting to maximize the distance between the
means of the projected distributions while minimizing the sum of their
variances. Both of these criteria in general will contribute to the discrim-
ination performance, as illustrated in a two-dimensional example in
Figure 3 (Jolliffe, 1986, Sec 9.1; Bishop, 1995, Sec 3.6.1).

The solution vector f to Equation 3 can be obtained by the method of
Lagrange multipliers, i.e., by maximizing the numerator of Equation 3
and keeping the denominator constant (Anderson, 1984, Sec 6.4; Bishop,
1995, Sec 3.6.1 and appendix C). The resulting condition for f is

1
2~S0 1 S1! z f 5 m1 2 m0 . (6)

This equation can be solved immediately if the covariance matrices Si
(i 5 0, 1) are invertible: f 5 2(S0 1 S1 )21 (m1 2 m0 ). If the covariance
matrices Si are not invertible, then the two distributions of stimuli are
concentrated on a linear subspace of the original stimulus space, and the
discrimination problem has to be considered and solved on the common
subspace on which S0 and S1 are invertible (apart from trivial cases, see
Anderson and Bahadur, 1962, footnote 3). Because in the present case
the matrices Si were not always invertible, this latter requirement was
implemented as follows: the matrix 1/2(S0 1 S1 ) was diagonalized
numerically. The eigenvalues li and the corresponding eigenvectors ei
were arranged in decreasing order of magnitude: l1 $ l2 $ . . . $ l101 $
0. The first n largest eigenvalues accounting for 99% of the variance were
retained, i.e., n was the smallest integer such that:

O
i51

n

li

O
j51

101

l j

$ 0.99. (7)

The projection of m1 2 m0 onto the first n eigenvectors of 1/2(S0 1 S1 )
was computed: vi 5 (m1 2 m0 )Tzei, for i 5 1, . . .,n. The optimal feature
vector f was then obtained from

f 5 O
i51

n
y i

l i
e i (8)

(Fig. 4 E, F ) (Press et al., 1992, Sec 2.6; Bishop, 1995, Sec 3.4.3 and 3.6.2).
The number of eigenvalues retained ranged from 3 to 101 and depended
on the cut-off frequency of the stimulus as well as on the sampling step
Dt. This relationship can be understood by considering the matrix p0S0 1
p1S1 , where p1 is the probability of spike occurrence in a bin Dt and p0
the probability of no spike occurring in Dt. This matrix is a continuous
deformation of 1/2S0 1 1/2S1 and represents the covariance of the
stochastic process s(t). A classical result states that for the stationary
stimuli s(t) used in these experiments, the eigenvalues of p0S0 1 p1S1 are
asymptotically related to the power spectrum of s(t) (Greenander and
Szegö, 1958, Chap 5). The number of non-zero eigenvalues is therefore
determined by the cut-off frequency of s(t) and the sampling step Dt.
Furthermore, the eigenvectors of p0S0 1 p1S1 are expected to be oscil-
lating functions of time, which is a characteristic that is also observed for
the eigenvectors of 1/2S0 1 1/2S1. The oscillatory behavior of the
eigenvectors of 1/2 S0 1 1/2S1 translated into an oscillatory behavior of
the feature vector f, which was more or less pronounced depending on the
value of the projections of m1 2 m0 onto these eigenvectors (Fig. 4 F, H ).

Quantification of the classifier performance. To quantify the classifier
performance, we computed the projection of each st onto f. This was used
to determine the two conditional distributions P(fTzs z l 5 1) and P(fTzs u l
5 0) (Fig. 5A). The probability of correct detection (PD ), i.e., the
probability of correctly identifying a stimulus vector s as eliciting a spike
and the probability of false-alarm (PFA ), i.e., the probability of incor-
rectly classifying a stimulus vector s as eliciting a spike were obtained for
successive values of the threshold u by numerically integrating the tails of
the two distributions P(fTzs . u u l 5 1) and P(fTzs . u u l 5 0) using a
trapezoidal rule. PD was then plotted as a function of PFA (Fig. 5B). This
plot is called a receiver operating characteristic (ROC) curve (Green and
Swets, 1966).

The overall probability of misclassifying a stimulus as eliciting a spike
or not, e, was obtained as the minimum of:

1
2PFA 1

1
2~1 2 PD!, (9)

over the whole range of values determined by PFA [[0;1] and the
function PD(PFA ) (Fig. 5C). In this equation, PFA represents the proba-

Figure 3. Graphic illustration of the principle underlying the selection of
the optimal feature vector f using the Fisher discriminant function (see
Eq. 3). In this two-dimensional example, the circles and squares are sample
points drawn from two Gaussian distributions with different mean vectors,
mi , and identical covariance matrices, Si (i 5 0, 1), representing P(s u l 5
0) and P(s u l 5 1), respectively. For each direction f in stimulus space
one computes the means, mi , and the variances, s i

2, of the two distri-
butions P(fTzs u l 5 1) and P(fTzs u l 5 0) projected onto f. The optimal
direction selected by Eq. 3 is the one that maximizes the squared distance
between these means, divided by the sum of their variances. In this
particular example, the squared distance between the means, mi, is
maximized, and the sum of the variances, s i

2, is minimized for the
direction shown.
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Figure 4. Computation of the optimal feature vector f exemplified for an I-type pyramidal cell in LS (stimulus parameters: A0 5 1.25 mV/cm, fc 5 12
Hz, s 5 0.29 V; Dt 5 7 msec). A, B, Mean stimuli m0 and m1 preceding no spike occurrence and a spike, respectively. In these two panels and the
following ones, error bars always represent SD over 10 repetitions of the same experiment. C, D, Covariance matrices S0 and S1 of the distributions P(s u l
5 0) and P(s u l 5 1). Insets, Mean value and SD of the estimated covariances along the main diagonals and the t 5 0 axis. E, Eigenvalues of 1/2S0 1
1/2S1 sorted in decreasing order of magnitude. In E–G, arrows indicate the last eigenvalue taken into account for the computation of f (eigenvalue
number 5 17). F, Normalized value of the projection of m1 2 m0 onto the eigenvectors of 1/2S0 1 1/2S1. The sum of the first 17 eigenvectors weighted
by the corresponding normalized projection yields f. G, Value of the signal-to-noise ratio, SNR, as a function of the number of eigenvalues considered
for the computation of f. SNR saturates when 17 eigenvectors are taken into account. Thus, eigenvectors with eigenvalue numbers larger than 17 do not
contribute significantly to the discrimination performance. H, Feature vector obtained by the Fisher method (solid line) and Euclidian feature vector f 5
m1 2 m0 obtained directly from A and B (dashed line).
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bility of false positives (5 false alarm), whereas (1 2 PD ) is the proba-
bility of false negatives. A value of e 5 1⁄2 corresponds to a discrimination
performance at chance level. Conversely, e 5 0 indicates that it is
possible to perfectly predict the occurrence or nonoccurrence of a spike
by projecting the stimulus vector s onto f. Thus, e is a measure of how
well the projection of s onto the feature vector f predicts the occurrence
or nonoccurrence of a spike. This in turn can be interpreted as a measure
of how accurately spikes of P-receptor afferents and pyramidal cells
convey information on the presence or absence of temporal features,
such as upstrokes or downstrokes in the RAM wave-form. Note that the
error rate e does not correspond to the minimum error achieved in
predicting the occurrence of a spike by an ideal observer who has
complete knowledge of the statistical properties of the stimulus and the
spike occurrence probability (Bayes rule) (Poor, 1994) because the prior
probability p1 of a spike in a bin Dt was not taken into account. Instead,
the error rate e corresponds to the minimum error achieved by an ideal
observer having no access to p1 , i.e., the minimum error rate under the
least favorable priors, or minimax rule (Fig. 5D) (Poor, 1994). The error
rate e was computed by using a resubstitution method (i.e., the same data
set was used to compute f and e). In a series of test cases, we verified that
the downward bias of e was negligible by comparing e to the error rate
obtained by a cross-validation method (Fukunaga, 1990). This result was

in accordance with theoretical analyses on the dependence of the bias of
Fisher discriminants with sample size (Raudys and Jain, 1991). Ulti-
mately, the bin size Dt that yielded the lowest value of e was retained. An
example of the dependence of e on Dt is illustrated in Fig. 5D (inset).

Euclidian classifier. The performance of the Fisher classifier was com-
pared with the performance of the Euclidian classifier, which was ob-
tained by using the feature vector f 5 m1 2 m0 without taking into
account the covariances of P(s u l 5 0) and P(s u l 5 1) (Figs. 4 H, 5C).
This feature vector is considerably easier to compute and coincides with
the Fisher feature vector when the two covariance matrices S0 and S1 are
proportional to the identity matrix, that is, when no correlations exist
among different components of s (see Eq. 2). This follows from Equation
1, because in this case the matrix multiplication on the left side reduces
to multiplication by a scalar. Although our covariance matrices were
usually not proportional to the identity matrix (Figs. 2, 4 D,E), compar-
ison of the performance achieved by these two methods served as a
measure of the influence of correlations between components of s on the
classification performance. More general classification schemes such as
linear logistic discrimination (Efron, 1975) or nonlinear classifiers
(Fukunaga, 1990) were not considered.

Information conveyed by bursts of spikes. Pyramidal cells exhibited a
marked tendency to fire short bursts of spikes in their spontaneous

Figure 5. Quantification of the feature extraction performance (same example as in Fig. 4). A, Distributions P(fTzs u l 5 0) (lef t curve) and P(fTzs u l 5
1) (right curve) of the stimulus projected onto the feature vector f. The distributions were computed using 241 bins centered at the mean of each
distribution and covering 63 SD. The last bin on each side represents the tail of the distribution. Note the large tail for negative values of f. Error bars
represent SD over 10 repetitions of the same experiment. B, The probability of correctly identifying a stimulus vector s as eliciting a spike plotted as a
function of the probability of incorrectly classifying a stimulus vector s as eliciting a spike (5 false alarm). This plot, which is called an ROC
curve, corresponds to the performance of the linear classifier hf,u (s) for different values of the threshold u. Decreasing the threshold increases the
probability of false alarm. Dashed line, Chance level. C, Probability of misclassification 1/2PFA 1 1/2(1 2 PD ) plotted as a function of the probability
of false alarm, PFA. The minimum, minPFA

[1/2 PFA 1 1/2(1 2 PD)] yields the value of e used to characterize the performance of single spikes to convey
information on the presence of temporal features in the stimulus. Dotted line, Performance of the Euclidian classifier (see Fig. 4 H). D, Minimum
probability of misclassification minPFA

[(1 2 p1 )PFA 1 p1(1 2 PD)] as a function of the prior probability of a spike in a bin, p1. The choice p1 5 1/2 used
to compute e (see C) corresponds to the least favorable prior (i.e., the highest possible value for the probability of misclassification). Inset, Dependence
of e on the bin size Dt. Although e decreases with bin size in this example, increases and minima for intermediate bin sizes were also observed.
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activity as well as in response to electric field RAMs. Therefore, we
separated their spikes into two subclasses consisting of isolated spikes
(denoted by l 5 1isol ) and of spikes belonging to bursts (denoted by l 5
1burst ) based on the shape of the interspike interval distribution (see
Results). An additional subclass consisting of spikes belonging to bursts
of three or more spikes was also considered (l 5 1burst3 ). To investigate
how the occurrence of upstrokes and downstrokes in the RAM waveform
was signaled by isolated spikes versus spikes belonging to bursts, we
applied the techniques described above to study the separation between
P(fTzs u l 5 0) and P(fTzs u l 5 1isol ) as well as the separation between
P(fTzs u l 5 0) and P(fTzs u l 5 1burst ) or the separation between P(fTzs u l
5 0) and P(fTzs u l 5 1burst3 ).

Comparison across cell t ypes and maps. We compared the performance
of the different pyramidal cell types, i.e., E-units versus I-units as well as
units from CMS versus LS, by computing the median probabilities of
misclassification for each class and testing them for statistically signifi-
cant differences using nonparametric methods (Wilcoxon rank sum test)
(Lehmann, 1975).

Information conveyed by periods of silence in P-receptor afferent spike
trains. The encoding of RAM downstrokes by periods of silence in
P-receptor afferent spike trains was studied using similar feature extrac-
tion methods. Briefly, temporal stimulus waveforms (300 msec long;
sampling step Dt 5 5 msec) were separated into two classes according to
whether a 50 msec period of nonspiking occurred in P-receptor afferent
spike trains. This time window reached from 250 to 300 msec, corre-
sponding to the most recent 50 msec of the 300-msec-long stimulus
waveform. The two classes were subsequently classified by projection
onto a Euclidian feature vector.

RESULTS
We recorded the activity of a total of 236 pyramidal cells by using
both intracellular and extracellular recording techniques and of
20 P-receptor afferents extracellularly. Recordings of 61 pyrami-
dal cells and 18 P-receptor afferents were suited for data analysis.

Spontaneous activity of pyramidal cells
Pyramidal cell recordings in vitro often reveal spontaneous slow
rhythmic discharges (Mathieson and Maler, 1988; Turner et al.,
1996). We recorded the spontaneous activity of pyramidal cells in
vivo and analyzed a total of 36 cells (17 E-units from CMS, 9
I-units from CMS, 6 E-units from LS, and 4 I-units from LS). The
spontaneous activity was measured in the complete absence of an
electric field, i.e., no carrier signal was presented. Mean firing
rates ranged between 7 and 43 Hz, and the CVs of the ISI
distributions reached values between 0.4 and 2.2 (Fig. 6A, inset).
The variance of the spike count was a linear function of the mean
when plotted in double-log coordinates, with slopes ranging from
0.8 to 1.6 (counting intervals: 10–5010 msec, corresponding to
mean spike counts between 1 and 200; Pearson correlation coef-
ficients: 0.96–0.99). Although these values differ from the in vitro
results (Turner et al., 1996) (see Discussion), they are consistent
with values obtained in in vivo recordings in various other sensory
systems (Teich et al., 1996). In the majority of cases analyzed (n 5
32), pyramidal cells tended to fire short bursts of spikes separated
by longer intervals of silence. This manifested itself in the inter-
spike interval distributions by one or two prominent peaks, usu-
ally well separated from a tail of longer intervals (Fig. 6A). The
remaining four cases resembled the regularly spiking (n 5 2) and
the irregularly spiking pyramidal cells (n 5 2) described in
Turner et al. (1996). The tendency of pyramidal cells to fire in
bursts was also obvious in the autocorrelation function of the
spike trains: it exhibited a large peak at a delay corresponding to
the preferred intraburst interspike interval (Fig. 6B).

On the basis of these observations, we defined bursts as events
consisting of two or more spikes that were separated by a time
interval shorter than a value tmax. This value, tmax , was deter-
mined for each spike train from its ISI distribution by selecting

the first trough immediately following the large peak(s) described
above (Fig. 6A, arrow) [note that this approach is similar to the
one chosen by Turner et al. (1996)]. The distribution of the
number, n, of spikes per event was then plotted for each spike
train (Fig. 6C) (n 5 1 corresponds to isolated spikes and n $ 2 to
bursts). The resulting distributions could be fitted well by an
exponential function of the number of spikes per events, pn , with
pn 5 ean1b, except for one or two occasional outliers (Fig. 6C,
arrow). The parameters a and b represent the slope and the
intercept, respectively. For our sample, the distribution of values
for these two parameters a and b is given in Fig. 6D. The values
for the slope a and the intercept b were well correlated (Pearson
coefficient r 5 20.97) following the relation a 5 a b 1 b, with a
5 20.46 and b 5 20.81 (Fig. 6D, dashed line). Thus, points in the
lower right of Fig. 6D represent pyramidal cells with a spontane-
ous activity that exhibited more isolated spikes, p1 5 ea1b, and
relatively fewer bursts, pn /p1 5 e a(n21). Conversely, points in the
upper left of the graph represent cells that showed more bursts in
their spontaneous firing patterns. The graph suggests a slight
tendency of cells in LS to fire more bursts during their sponta-
neous activity than did most cells in CMS.

Encoding of the time course of RAMs by P-receptor
afferents and pyramidal cells
During stimulus presentation, the activity of pyramidal cells was
modulated by the RAMs of the EOD mimic (Fig. 7B, C; see Fig.
9A, B). Nevertheless, the statistical properties of spike trains
obtained during stimulation of pyramidal cells differed little from
those recorded during spontaneous activity. Values of mean ISIs
and CVs were similar to those observed during spontaneous
firing, and pyramidal cells retained their characteristic bursting
patterns (Gabbiani et al., 1996, their Fig. 1A). Furthermore, the
pyramidal cell activity was more stable than the response of
P-receptor afferents when stimulus parameters were varied be-
tween repetitive stimulations. Whereas changes in the mean stim-
ulus amplitude, for instance, elicited large sustained changes in
the mean firing rate of P-receptor afferents (Wessel et al., 1996,
their Fig. 5), similar changes did not substantially alter the sus-
tained responses of pyramidal cells (data not shown). These
observations are consistent with the presence of adaptive mech-
anisms at the level of the ELL, such as gain control, which
normalizes the response of pyramidal cells (Bastian, 1986a).

The ability of P-receptor afferents and E- and I-type pyramidal
cells to convey information about the time-course of the stimulus
was initially assessed by a simple linear estimation of the stimulus
from the spike trains, as illustrated in Fig. 7A–C. P-receptor
afferents exhibited higher firing rates than pyramidal cells, and a
large fraction of the stimulus was recovered from trains of single
spikes. The stimulus estimation results were similar to those
described in Wessel et al. (1996) and are consistent with the
encoding of detailed stimulus time-course by modulations of the
instantaneous firing frequency of P-receptor afferents (Gabbiani
and Koch, 1998, Sec 9.6.3 and 9.7.3). At the lower cut-off frequen-
cies used in the present study, the fraction of the stimulus encoded
reached values up to g 5 0.82, and occasionally signal-to-noise
ratios as high as 100:1 were observed. In contrast, all E- and I-type
pyramidal cells analyzed encoded the time-course of the stimulus
only very poorly (Fig. 7B,C) (Gabbiani et al., 1996, their Fig.
3C,D). The signal-to-noise ratios obtained by estimating the stim-
ulus from pyramidal cell spike trains were always considerably
smaller than those observed by estimation from P-receptor affer-
ent spike trains. They typically peaked at a frequency that de-
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pended on the cell recorded from and on the cut-off frequency of
the stimulus. Two such examples are shown in Figure 7B,C. When
peak SNRs of pyramidal cells located in CMS were compared
with those from LS, no statistically significant differences were
found.

An alternative possibility to characterize pyramidal cell activ-
ity is to determine the information conveyed by their spike trains
on the detailed time-course of positively half-wave rectified (E-
type pyramidal cells) or negatively half-wave rectified RAMs
(I-type pyramidal cells). Encoding of half-wave rectified stimuli
by pyramidal cells would be consistent with their response prop-
erties to sinusoidal or step-wise amplitude modulations (Bastian
and Heiligenberg, 1980; Saunders and Bastian, 1984). To investi-
gate this idea, we estimated positively and negatively half-wave-
rectified RAMs from pyramidal cell spike trains and computed
the corresponding coding fractions, g1 and g2. A selectivity
index, is , was defined as the ratio of the coding fraction for that
part of the half-wave rectified stimulus facing in the preferred

direction of the cell (up- or downstroke) over the coding fraction
for the antipreferred direction. Thus, for E-type cells, it was is 5
g1/g2 (preferred direction 5 amplitude increase) and for I-type
cells, it was is 5 g2/g1 (preferred direction 5 amplitude de-
crease). The plot of this selectivity index (Fig. 8A) shows that
E-type and I-type cells were indeed more sensitive to amplitude
increases and decreases, respectively. However, the fraction of the
stimulus encoded in the preferred direction of the cells was not
significantly higher than the coding fraction for the full stimulus,
as shown in Figure 8B. Thus, we conclude that the poor perfor-
mance of pyramidal cells was not attributable to a good perfor-
mance in their preferred direction counterbalanced by a poor
performance in their antipreferred direction. Therefore, it is
unlikely that E- and I-type pyramidal cell spike trains convey
detailed time-course information on positively and negatively
half-wave rectified stimuli, respectively.

Yet another possibility is that pyramidal cells might encode
detailed time-course information on a specific frequency band of

Figure 6. Spontaneous activity of an E-type pyramidal cell in CMS (no external stimulus present). A, ISI distribution, with a mean interspike interval
of 60 msec and a CV equal to 1.56. The arrow indicates the maximal interspike interval (tmax 5 19 msec) between two spikes assigned to the same burst
event. The range of values for the mean and CV observed in 36 cells is given in the inset. B, The autocorrelation function of the spike train (thick line)
showed a peak at the preferred intraburst interspike interval (15 msec). This peak disappears in the autocorrelation function of the events (thin line),
which consist of the original isolated spikes and one spike for each burst in the spike train (Bair et al., 1994). The d function singularity of both
autocorrelation functions at t 5 0 has been subtracted. C, The probability distribution of the number of spikes per event was always well fitted by a straight
line in logarithmic coordinates (Pearson correlation coefficient r 5 20.998; observed range, from 20.957 to 20.999). The arrow indicates a single burst
event containing 16 spikes that was not included in the fit and was classified as an outlier (total number of events, 1012). D, Plot of the slope, a, versus
the intercept parameter, b, describing the statistics of spikes per event (dashed line, best linear fit). Different symbols indicate responses obtained from
different pyramidal cell types and ELL maps (n 5 32 pyramidal cells). ECMS , E-units in centromedial map; ELS , E-units in lateral map; ICMS , I-units in
centromedial map; ILS , I-units in lateral map.
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the presented stimulus, subsequently followed by half-wave rec-
tification. Because many of our cells were most sensitive to the
highest frequencies contained in the RAMs (Fig. 7C), we tested
this hypothesis by estimating the temporal derivative of the
stimulus from pyramidal cell spike trains and comparing their

performance to that of P-receptor afferents. As shown in Figure
8C, pyramidal cells again were clearly outperformed by
P-receptor afferents. Similar results were obtained for half-wave
rectified temporal derivatives (data not shown).

Because we observed that most pyramidal cells tended to fire in

Figure 7. Examples of linear and quadratic
stimulus estimations for responses of
P-receptor afferents (A), E-type (B), and
I-type pyramidal cells (C). For all three exam-
ples ( A–C), spike trains are symbolized in each
bottom row, the corresponding RAMs (5 stim-
uli) are indicated in the center and superim-
posed with their linear, and in B and C only,
quadratic estimates obtained from the spike
trains. Each top row contains two graphs show-
ing the power spectral density of the stimulus as
a function of stimulus frequency (lef t graphs)
and SNR in the frequency domain for linear
estimation (right graphs). A, P-receptor affer-
ents encoded the detailed time-course of the
stimulus by modulating their instantaneous fir-
ing frequency. Note the much higher sustained
firing rate than that observed in pyramidal cells
(see B and C) (mean firing rate: 221 Hz; coding
fraction g 5 0.76; stimulus parameters: A0 5 1.2
mV, s 5 0.26 V, fc 5 9 Hz). B, Linear and
quadratic estimation for an E-type pyramidal
cell from CMS (Ecms ; mean firing rate: 17 Hz;
glin 5 0.09; gquadr 5 0.13; stimulus parameters:
A0 5 3.0 mV, s 5 0.32 V, fc 5 18 Hz). The
stimulus was resampled at a 50 Hz sampling
rate to compute the quadratic estimate (see
Materials and Methods). The stimulus as well
as the linear and quadratic estimates are there-
fore illustrated at this sampling rate. C, Same as
in B for an I-type pyramidal cell from CMS
(Icms ; mean firing rate: 13 Hz; glin 5 0.11; gquadr
5 0.15; stimulus parameters: A0 5 5.0 mV, s 5
0.34 V, fc 5 9 Hz).
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short burst-like spike patterns that were also seen in their spon-
taneous activity (see above), we finally considered the hypothesis
that the information about the detailed time-course of one of the
derived functions of the stimulus considered above might be
encoded by means of nonlinear interactions between nearby
spikes. This assumption was tested by estimating stimuli from
pyramidal cell spike trains using a quadratic algorithm that en-
abled us to take such interactions between two subsequent spikes
into account. As illustrated in Figure 8C,D and quantified for 25
pyramidal cells in Figure 8D, the fraction of the stimulus recov-
ered from the spike trains improved only marginally with respect
to that recovered by linear estimations. It was still well below the
performance seen in P-receptor afferents (Fig. 8C). Identical
results were obtained for half-wave rectified stimuli and (half-
wave rectified) temporal derivatives (data not shown). Hence, the

bursts, which were so obvious in pyramidal cell spike trains, did
not convey detailed time-course information on the stimulus.

In summary, these results suggest that under the conditions of
our experiments, pyramidal cells did not encode either detailed
time-varying information or information about some simple
transformed function of the time course of random modulations
of the electric field amplitude.

Extraction of RAM upstrokes and downstrokes by
pyramidal cells and P-receptor afferents
Although pyramidal cells did not encode significant information
on the time course of the stimulus or of some transformed
function of it, their responses to RAMs were nonetheless reli-
able. Figure 9 illustrates representative recordings from an I-type
cell in CMS and an E-type cell in LS. As is particularly evident

Figure 8. Summarized results of linear and quadratic stimulus estimations for E- and I-type pyramidal cells from CMS and LS as well as (in C only)
for P-receptor afferents. Only pyramidal cells encoding at least 8% of the full stimulus during one stimulus presentation are included (n 5 25). In
addition, for both pyramidal cells and P-receptor afferents, only the best value across all stimulus presentations is plotted. A, Selectivity index of
pyramidal cell responses for temporal stimulus modulations in their preferred versus antipreferred direction. Pyramidal cells encoded temporal
modulations of the stimulus amplitude up to 4.5 times better in their preferred direction than in their antipreferred direction. B, Fraction of the half-wave
rectified stimulus encoded in the preferred direction of each cell versus the coding fraction for the full stimulus (diagonal line, identical performance in
the two tasks). No significant increase was observed. Hence, pyramidal cells were not encoding amplitude modulations of the half-wave rectified stimulus
in their preferred direction. C, Fraction of the temporal derivative of the stimulus encoded by P-receptor afferents and pyramidal cells. Pyramidal cells
are significantly outperformed by P-receptor afferents. D, Fraction of the stimulus recovered by quadratic versus linear estimation for pyramidal cells
(diagonal line, identical performance). The coding fraction for quadratic estimation is only marginally better than that for linear estimation in all
pyramidal cell types of both ELL maps studied.
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in Figure 9A, this I-type cell encoded well the occurrence of
downstrokes in the RAM by firing isolated spikes and even short
spike bursts in response to pronounced downstrokes. In contrast,
the response of the E-type cell shown on the right (Fig. 9B) to
upstrokes in the RAM was less accurate, which was a character-
istic feature of our data sample and is explained in the next
section.

To characterize the signaling of upstrokes and downstrokes by
pyramidal cell spikes, we adapted methods of statistical pattern
recognition and signal detection theory to identify an optimal
feature vector f that predicted the occurrence or nonoccurrence
of a spike (Figs. 2–4). For I-type pyramidal cells, the optimal
temporal feature vector predicting the occurrence of a spike was
typically a downstroke preceded by a small upstroke 100 msec
before a spike (Fig. 4H). For P-receptor afferents and E-type
pyramidal cells, the optimal temporal feature was reversed (com-
pare the top lef t and right panels of Fig. 2 with Fig. 4, A and B,
respectively). The separation between the two conditional distri-
butions of stimuli occurring before a spike or before no spike was
characterized by the probability of misclassifying a stimulus vec-
tor as eliciting or not eliciting a spike after projecting it onto the
feature vector f. Similar results were obtained for feature vectors
computed by maximizing a Fisher discriminant function and for
a Euclidian classifier (see Materials and Methods). The perfor-
mance of the Euclidian classifier was consistently below that of
the Fisher discriminant, with a small but statistically significant
average difference in misclassification error across our pyramidal
cell sample equal to 1.5% 6 0.2 (mean 6 SD; n 5 28 pyramidal
cells), i.e., ^eFisher 2 eEuclidian& 5 0.015 (Fig. 5C).

As illustrated in Figure 10,A,B (I-unit) and C,D (E-unit), py-

ramidal cells were able to reliably signal the occurrence of down-
strokes or upstrokes in the RAM waveform. When projected onto
the feature vector f, the distribution of stimuli occurring before
spikes was clearly separated from the null distribution of stimuli
preceding a bin that contained no spike. The separation increased
further when only spikes belonging to burst-like spike patterns
were considered, i.e., when we determined the separation be-
tween P(fTzs u l 5 1burst ) and P(fTzs u l 5 0). This indicated that
spikes as part of bursts carried the most reliable information
about the presence of up- and downstrokes in the RAM wave-
form. This observation was characteristic for our entire data
sample (Gabbiani et al., 1996, their Fig. 3A,B).

When we considered bursts of three or more instead of only
two spikes, we observed only a small average increase in the
separation between P(fTzs u l 5 1burst3 ) and P(fTzs u l 5 0) (mean
decrease in misclassification error: ^eburst 2 eburst3& 5 0.008 6
0.018; mean 6 SD; n 5 32 pyramidal cells). In contrast, according
to this criterion, spikes of P-receptor afferents conveyed the
presence of upstrokes only poorly, which is illustrated in Figure
10, E,F. The difference in conveying information about temporal
features in the RAM waveform seen in P-receptor afferents and
pyramidal cells firing in bursts was highly significant and is sum-
marized in Fig. 11A.

Differences in feature extraction across pyramidal cell
types and maps of the ELL
We investigated differences in the encoding of RAM up- and
downstrokes among the various classes of ELL pyramidal cells
from CMS and LS. We considered only those spikes that be-
longed to bursts because those encoded RAM up- and down-

Figure 9. Responses of two pyramidal cells to electric field RAMs. A, Intracellular recording of an I-type pyramidal cell in CMS. A tight coupling
between stimulus downstrokes and spike occurrences is apparent. On average, larger downstrokes lead to generation of short spike bursts rather than
isolated spikes (stimulus parameters: A0 5 2.5 mV/cm, fc 5 25 Hz, s 5 0.39V; for a bin size Dt 5 3 msec, e 5 0.15). B, Intracellular recording of an E-type
pyramidal cell in LS. Note that the spikes are less tightly coupled to the stimulus upstrokes than they are to the downstrokes in A (stimulus parameters:
A0 5 5.0 mV/cm, fc 5 25 Hz, s 5 0.29 V; for a bin size Dt 5 9 msec, e 5 0.33).
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Figure 10. Distribution of stimuli projected onto the optimal feature vector and corresponding ROC curves for an I-type (A, B) and an E-type pyramidal
cell (C, D) as well as for a P-receptor afferent (E, F ). A, I-unit in CMS (Icms ); same recording as in Fig. 9A. Distribution of projected stimuli occurring
before a bin containing no spike (black), before an isolated spike (light gray), and before a spike belonging to a burst (dark gray). B, Corresponding ROC
curve for the discrimination between the distribution of projected stimuli occurring before no spike and isolated spikes (isolated), all spikes (all ), and
spikes belonging to bursts (burst). The spikes occurring during burst discharges yield the best performance (eisol 5 0.21, e 5 0.15, eburst 5 0.12). C, D,
Same plots as in A and B but for an E-unit in CMS (Ecms ; stimulus parameters A0 5 5 mV/cm, fc 5 18 Hz, s 5 0.4 V; bin size Dt 5 7 msec; eisol 5 0.42,
e 5 0.36, eburst 5 0.30). E, F, Distribution of projected stimuli for a P-receptor afferent occurring before a bin containing no spike (black) and a spike
(light gray) (E) corresponding ROC curve (F) (stimulus parameters A0 5 1.0 mV/cm, fc 5 20 Hz, s 5 0.29; bin size Dt 5 1.5 msec; e 5 0.39).
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strokes best. By pooling I-type cells from CMS and LS and
comparing their performance with E-type cells of the same
segments, we found that I-type cells conveyed more accurately
the presence of downstrokes than E-type cells encoded upstrokes
(Fig. 11B). Similarly, pyramidal cells in CMS extracted the tem-
poral features in RAMs better than cells in LS (Fig. 11C). The

latter difference, however, was only significant at the p # 0.1 level,
and correspondingly, the overlap between the two distributions of
misclassification errors was larger than between those of E- and
I-type cells.

To further characterize the differences observed between E-
and I-type pyramidal cells, pyramidal cells from CMS and LS,
and pyramidal cells and P-receptor afferents, we performed pair-
wise comparisons among all possible classes of pyramidal cells
and P-receptor afferents. The results are summarized in Table 1.
The performance in the signaling of temporal features by the
different cell classes inferred from Table 1 can be summarized by
the following inequality (performance increased from left to
right):

Paff $ Els $ Ecms . Ils . Icms . (10)

In Equation 10, the symbol X . Y indicates that the median
misclassification error for cell class X was significantly larger than
for cell class Y; or in other words, class Y performed the feature
extraction task better than class X. On the other hand, the symbol
X $ Y indicates that direct comparison between X and Y was not
statistically significant and that the ordering was obtained by
indirect comparisons with additional cell classes. Therefore,
I-type pyramidal cells, especially those in CMS, extracted stim-
ulus features better than E-type cells from either CMS or LS. In
addition, the overlap between the distributions of misclassifica-
tion errors of P-receptor afferents and pyramidal cells (Fig. 11A)
is attributable largely to E-type pyramidal cells from LS (Els ),
whereas the overlap observed between pyramidal cells from CMS
and LS (Fig. 11C) resulted from pooling subgroups having inter-
twined performances (such as Ecms . Ils . Icms). The observed
differences between pyramidal cells from CMS versus LS corre-
lated with the different behavioral significance of ELL maps as
discussed below.

Encoding of RAM downstrokes in P-receptor afferent
spike trains during periods of nonspiking
Downstrokes in RAMs of an electric field were encoded in
P-receptor afferents by periods of nonspiking (Fig. 7A). We tested
whether this information, when inverted by inhibitory interneu-
rons in the granule cell layer of the ELL (Fig. 1) and consequently
resulting in the lack of inhibitory input, could at least partly
account for the good feature extraction found in I-type pyramidal
cells. For this purpose, we applied feature extraction techniques

4

Figure 11. Comparison of the performance of different pyramidal cell
types in various ELL maps and, in A only, of P-receptor afferents in the
feature extraction task. A, Histogram of the best (lowest value across all
stimulus presentations) misclassification error e obtained for P-receptor
afferents (Paff ; n 5 18) and both types of pyramidal cells (P cells; n 5 40;
only spikes belonging to bursts are taken into account). Median value of
distribution for P-receptor afferents (emedian 5 0.37) and for pyramidal
cells (emedian 5 0.29) are indicated by the right and lef t vertical arrow,
respectively. Higher values of the misclassification error indicate worse
performance. The difference in median values is significant at the p #
0.0005 level (Wilcoxon rank sum test). B, Distributions of the misclassi-
fication error for E-type (n 5 18) and I-type pyramidal cells (n 5 22) from
both CMS and LS combined. Median value of distribution for I-units:
emedian 5 0.26 (lef t vertical arrow) and for E-units: emedian 5 0.34 (right
vertical arrow). Significance level: p # 0.005. C, Distribution of the
probability of misclassification for both E- and I-type pyramidal cells
combined from LS (n 5 21) versus those from CMS (n 5 19). Median
value of distribution for cells in CMS: emedian 5 0.28 (lef t vertical arrow)
and for cells in LS: emedian 5 0.33 (right vertical arrow). Significance level:
p # 0.1.
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to study the separation between 300-msec-long stretches of
RAMs eliciting no spikes within their last 50 msec (between 250
and 300 msec of the stimulus waveform) and those eliciting at
least one spike. This duration of 300 msec corresponds to the
presumed integration time of pyramidal cells, as determined
previously (Gabbiani et al., 1996). The corresponding feature
vector was a downstroke in the amplitude modulation, and the
separation between the two distributions was very good (e 5
0.08 6 0.03; mean 6 SD; n 5 38 experiments on 18 P-receptor
afferents). This suggested that periods of nonspiking or “silence”
in P-receptor afferent spike trains were, indeed, reliable indica-
tors of RAM downstrokes and could be used by I-type pyramidal
cells to extract their optimal stimulus feature.

DISCUSSION
The electrosensory system in weakly electric fish provides the
unique opportunity to combine computational and neuroetho-
logical approaches to quantify the information transfer from the
sensory periphery to higher order central neurons in a sensory
system the elements of which have a well characterized functional
and behavioral significance (Maler, 1996). When pre- and
postsynaptic responses to the same stimulus in this in vivo prep-
aration were compared, our data suggest a substantial transfor-
mation in the encoding pattern of sensory signals between the
first two stages of the amplitude coding pathway.

Computational methods
Linear stimulus estimation techniques by now have been applied
to various neuronal preparations (Haag and Borst, 1997; for
review, see Johnson, 1996, Sec 3; Rieke et al., 1996, Chap 2;
Gabbiani and Koch, 1998, Sec 9.7). They are well suited to
identify the encoding of time-varying stimuli in neuronal spike
trains and to quantify their accuracy, provided that the bandwidth
of the stimulus is significantly lower than the firing rate of the
neuron (Gabbiani and Koch, 1996; Johnson, 1996). This prereq-
uisite was well satisfied by P-receptor afferents, enabling them to
accurately encode low cut-off frequency time-varying amplitude
modulations (AMs) (Fig. 7A) such as those expected to be be-
haviorally relevant for these animals (,80 Hz) (Bastian, 1981b).
In contrast, the lower sustained discharge rates of pyramidal cells
were less appropriate to transmit time-varying information about

AMs (Fig. 8A–C). Nonetheless, this did not rule out the possibil-
ity that interactions between close pyramidal cell spikes, such as
those belonging to bursts, could result in nonlinear encoding of
time-varying stimuli. The relatively poor performance of nonlin-
ear decoding techniques (Fig. 8D), however, failed to support this
idea. Therefore, pyramidal cell spike bursts appear not to be well
suited to encode time-varying signals. This could be attributable
partly to the relatively stereotyped length of their intraburst
interspike intervals (Fig. 6) (Turner et al., 1996). Moreover, in
this and previous studies (Wessel et al., 1996; Gabbiani et al.,
1996), we exposed the entire body surface to RAMs, whereas
under natural conditions only small regions of the receptor array
are exposed to RAMs. Because our stimuli simultaneously acti-
vated the antagonistically organized center and surround of the
receptive fields of pyramidal cells, this might have resulted in an
underestimation of their performance.

Reliable stimulus estimation requires high sampling rates of
the stimulus and a tuning of interspike intervals to stimulus
intensity. In contrast, to reliably convey the presence of upstrokes
or downstrokes in a random signal, spikes or spike bursts need to
occur with a constant time lag to those features. In our study, the
accuracy of feature encoding was assessed by the misclassification
error of two pattern classifiers designed to discriminate between
the distributions of stimuli that occurred before a spike and no
spike, respectively. This involved the computation of first, the
mean stimulus prior to a spike, which is the reverse-correlation
between the stimulus and the spike train, second, the mean
stimulus before no spike occurrence, and finally, the covariance
matrices of both distributions. Thus, these methods could be
regarded as a generalization of the reverse-correlation technique,
extending it by characterizing the separation between stimuli
occurring before a spike and no spike, respectively. This repre-
sents the novel aspect of our analysis technique. Because the two
classifiers used in this study resulted in only small differences, we
could have used the Euclidian classifier (which is considerably
easier to compute) throughout our data analysis. Different ran-
dom stimuli, such as nonstationary signals, might yield larger
performance differences between them.

Methods of statistical pattern recognition have been applied
previously to characterize the encoding of information in neuro-
nal spike trains; for example, to categorize presented stimuli from
neuronal responses (Becker and Krueger, 1996; Victor and Pur-
pura, 1996; Middlebrooks et al., 1994).

Spontaneous activity of pyramidal cells in vivo and
in vitro
The statistical properties of the spontaneous activity of pyramidal
cells has also been characterized in a slice preparation of the ELL
in the closely related Apteronotus (Turner et al., 1996). However,
there were differences with our results obtained from in vivo
recordings in Eigenmannia. The CVs of the ISI distributions, for
instance, were higher in the in vitro recordings than in our study.
Furthermore, the average values observed in vitro increased from
LS to CMS and were correlated with increasing oscillation peri-
ods in the sub- and suprathreshold activity of pyramidal cells
from LS to CMS. Although we could not readily verify these
results in our study (Fig. 6A, inset), such map-specific oscillatory
tuning might underlie the frequency tuning observed in vivo in
response to sinusoidal AMs (Shumway, 1989). In our data sample,
the range of CV values corresponded well with that reported
from in vivo studies of other sensory systems (Teich et al., 1996).
The absence of oscillations in vivo might be based on the presence

Table 1. Comparison of the performance of the two pyramidal cell
types from CMS and LS as well as P-receptor afferents in the feature
extraction task

Paff Els Ecms Ils Icms

«median 0.37 0.38 0.30 0.29 0.23
n 18 9 9 12 10
Paff m ' .0.05 .0.0005 .0.0005
Els ' .0.01 .0.0005
Ecms .0.1 .0.005
Ils .0.05

First row: median value of the misclassification error, «median (for pyramidal cells,
only spikes belonging to bursts were included). For each unit, only the best « value
was retained. Second row: number of analyzed units in each class. Remaining rows:
results of pairwise comparisons of the median misclassification errors between all
classes. Each class X (columns: Paff, Els, Ecms, Ils) was compared with each class Y
(rows: Els, Ecms, Ils, Icms). The relation X ' Y indicates that differences were not
statistically significant ( p . 0.1). The relation X . Y symbolizes that the misclas-
sification error for class X was larger than for Y, with the significance level shown
underneath. In each column, note the monotone increase of the significance level
from top to bottom, and in each row, the monotone decrease from left to right. This
information was used to derive Equation 6 in the main text.
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of considerable feedforward and feedback synaptic inputs that are
lacking in the slice preparation. In the mammalian neocortex,
oscillatory discharge activity has also been observed more readily
in vitro than in vivo (Silva et al., 1991).

Information processing between the first two stages of
the amplitude pathway
This and previous investigations indicate that P-receptor affer-
ents faithfully encode RAMs without substantial processing, ex-
cept possibly for high-pass filtering (Bastian, 1981a; Gabbiani et
al., 1996; Wessel et al., 1996). In this respect, they might be
compared with simple analog-to-digital converters with binary
output (Aziz et al., 1996; Gray, 1996). At the level of the subse-
quent stage, the ELL, most of this information is discarded in
favor of an explicit representation of RAM upstrokes and down-
strokes by short bursts of spikes. Part of this information is
already present, although not explicitly, in the periods of nonspik-
ing of P-receptor afferents that reliably encoded RAM down-
strokes. Other studies have also emphasized the importance of
spike bursts as units of information (Cattaneo et al., 1981; Crick,
1984; Otto et al., 1991; Bair et al., 1994; Lewicki and Konishi,
1995; Livingstone et al., 1996; for review, see Lisman, 1997).

Based on an estimate of the variance of ISI distributions,
Bastian (1981b) determined that pyramidal cells were approxi-
mately 16 times more “effective” than receptor afferents in sig-
naling changes in stimulus amplitude. Bastian (1986b) suggested
that this might be attributable to convergence of afferent infor-
mation, which is supported by anatomical observations (Carr et
al., 1982).

Although the biophysical mechanisms responsible for the
extraction of RAM upstrokes and downstrokes by pyramidal
cells remain to be elucidated, they are most likely not based on
a simple linear thresholding of the somatic membrane poten-
tial (Gabbiani et al., 1996). Several nonlinearities, including
the active backpropagation of Na 1 spikes from the proximal
dendrites of pyramidal cells to their soma, could provide a
physiological basis for this feature extraction (Turner et al.,
1994). In addition, pyramidal cells receive massive efferent
feedback projections, both excitatory and inhibitory, from
higher order electrosensory structures that terminate primarily
on their large apical dendrites (Bastian, 1986a; Carr and
Maler, 1986; Bratton and Bastian, 1990; Maler and Mugnaini,
1994). Recently, it has been found in vitro that simultaneous
input from one particular excitatory feedback circuit, the stra-
tum fibrosum, and P-receptor afferents could greatly enhance
the feedback input and become very effective in bringing the
cell above spike threshold (Berman et al., 1997).

Earlier studies investigating the response properties of pyrami-
dal cells used either sinusoidal or step-wise AMs. Bastian
(1981a,b) reported that both E- and I-type pyramidal cells
showed band-pass characteristics in their responses to variations
in the frequency of sinusoidal AMs. He found that E-type pyra-
midal cells, much like P-type afferents, had peak responses for
sinusoidal AMs around 64 Hz, whereas I-type pyramidal cells
responded best to lower AMs (2–32 Hz). In contrast, Shumway
(1989) reported no obvious differences between E- and I-units
within a given map but described differences between the various
maps. Most cells in the LS were characterized as high-pass filters,
whereas most cells from the CMS were described as low-pass
filters.

In response to RAM stimuli, most of the cells in our sample
showed band-pass behavior (Figs. 4F, 7B,C). However, the peak

frequency characterizing this band-pass behavior was not clearly
correlated with the ELL map (CMS vs LS) or with the cell type
(E- vs I-unit). Frequencies of the peak signal-to-noise ratios
typically increased with the cut-off frequency of the stimulus. This
suggests that the frequency tuning of pyramidal cells is stimulus
dependent, as has been observed in vivo and in vitro in mamma-
lian visual cortex (Reid et al., 1992; Carandini et al., 1996).

Differences in the extraction of temporal features
across pyramidal cell types and maps of the ELL
Our results revealed differences in the encoding of RAM up-
strokes and downstrokes between E- and I-type pyramidal cells
(Figs. 9, 11B) as well as between cells from CMS and LS (Fig.
11C). In particular, I-type pyramidal cells from CMS performed
the temporal feature extraction task best (Table 1). Previous
investigations also showed differences in the encoding of brief
temporal modulations of signal amplitude between E- and I-units
(Metzner and Heiligenberg, 1991). The homogeneous electric
field geometry used in this study is expected to maximally acti-
vate the inhibitory commissural connections terminating on
E-type pyramidal cells responsible for common mode rejection
(Bastian and Courtright, 1991; Bastian et al., 1993; Maler and
Mugnaini, 1994). This might explain the lower performance of
E-units as compared with I-units. Stimulation localized within the
receptive fields of individual E- and I-units will have to be used to
test this hypothesis.

Various physiological differences between the two ELL maps,
CMS and LS, have been described previously (Shumway, 1989;
Metzner and Heiligenberg, 1991; Turner et al., 1996). Their
functional significance might be concluded from results derived
from recent inactivation studies that revealed distinctly different
behavioral significances for CMS and LS, respectively (Metzner
and Juranek, 1997). The CMS was necessary and sufficient for the
processing of signals eliciting a particular electrolocative behav-
ior, the jamming avoidance response, whereas the LS was neces-
sary and sufficient to process signals that evoke communication
behavior. Whereas the pattern that evokes chirping in Eigenman-
nia might be more complex and involve extreme low-frequency
modulations of the baseline voltage of the signal (Metzner and
Heiligenberg, 1991), up- and downstrokes of AMs are an integral
part of the stimulus pattern yielding a jamming avoidance re-
sponse (Heiligenberg, 1991).

In conclusion, the present study demonstrates not only that
a significant transformation in the signal processing mode can
already occur between the first two stages of a sensory path-
way, but it also exemplifies how a combination with neuroetho-
logical findings enriches the interpretation of results from
information theoretical approaches and helps to clarif y their
functional and behavioral significance. Future studies will ex-
pand this combined approach to study the encoding of spatially
localized and thus more natural stimuli, as well as simulta-
neous encoding in multiple pyramidal cell spike trains with
overlapping receptive fields.
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