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5.1 Introduction

Neurons in many sensory systems tend to fire action potentials intermittently
with spikes grouped into bursts of high-frequency discharge. Functionally,
bursts have been implicated in many different phenomena, such as efficient
transmission of sensory information [1], regulation of information flow during
slow-wave sleep [2], selective communication between neurons [3], epileptic
seizures [4], and synaptic plasticity [5]. In recent years, evidence has
accumulated that bursts indeed encode sensory information and that they may
even be more reliable indicators of important sensory events than spikes fired in
tonic mode [1][6][7][8][9][10][11][12]. To understand the biological relevance
of bursts and the cellular mechanisms underlying their generation, a wide variety
of approaches are needed. In vivo recordings from neurons in awake/behaving
animals allow investigating how different firing modes affect behavioral
performance. In vitro experiments, on the other hand, offer a greater control
over the preparation and are best suited to study cellular mechanisms of
bursting. Finally, various levels of modeling can summarize experimental
findings, test our understanding of mechanisms, and inspire new experiments. In
this chapter, we will follow this line of investigation and review a number of
recent studies of burst firing in weakly electric fish.

The electrosensory system of South American weakly electric fish has proven to
be extremely well suited for combined neuroethological and computational
studies of information processing from systems neuroscience to the
characteristics of ion channels. In this review, we will give a brief introduction
to the electrosensory system, describe in more detail the in vivo firing properties
of electrosensory pyramidal cells in the hindbrain of these fish, and report on the
potential behavioral role of bursts. Next, we present results of in vitro studies
that have elucidated some of the cellular mechanisms underlying burst
generation in pyramidal cells. This is followed by a discussion of detailed
compartmental models that successfully reproduce in vitro bursting and reduced
models offering a dynamical systems perspective on burst mechanisms. We
conclude by comparing burst firing in weakly electric fish to other systems.

5.1.1 What is a burst?

Spike bursts have been described in a large number of systems. Voltage traces
from a selection of bursting neurons are displayed in Figures 1 and 5. As is
evident from these examples, bursts can occur on a wide range of time scales
and vary in their fine temporal structure. Because the biophysical mechanisms
underlying bursts can be so diverse, it comes as no surprise that no unique
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definition of bursts exists. We will use the term here for the basic event that is
part of every burst definition: a burst is a series of action potentials fired in rapid
succession, set off in frequency against the rest of a spike train. In an interspike
interval (ISI) histogram, burst spikes will typically fall into one peak at short
intervals with the rest of the intervals forming either a shoulder to this peak, a
low plateau or a second, smaller peak at larger values (Fig.2a) [7][8]. This very
general definition has been used in many systems to classify spike sequences as
belonging to bursts or not. However, other criteria can be applied as well, as
illustrated in Fig.2b-d (see, e.g. [13][14][15][16][17][18][19][20][21][22]). The
specific choice of criterion will largely depend on the properties of the system
under study.

Figure 1

Examples of spike bursts observed in various preparations. a) The R15
neuron of Aplysia generates slow membrane potential oscillations on which
bursts of action potentials ride (adapted from [23]). b) Rebound bursts in
response to hyperpolarizing current pulses from a depolarizing holding
potential in thalamic relay neurons (arrow indicates resting potential;
adapted from [24]). c), d) Two types of bursting behavior in cortical
neurons of the cat (called intrinsically bursting and chattering cells,
respectively; adapted from [25]).

Figure 2

Examples of criteria used to assign spikes to bursts. a) A dip in the ISI
histogram separates burst interspike intervals from longer interburst
intervals (arrow; same cell as in Fig.5). b) Joint ISI plots clearly identify
initial spikes of a burst (right rectangle) from intraburst spikes (left square;
adapted from [9]). c) Bursts may be defined by computing a surprise factor
that measures their deviations from the expected patterns of spontaneous
independent spikes (adapted from [26]). d) Spike train autocorrelation
functions of bursting neurons sometimes show clear peaks that are
eliminated by treating bursts as single events (gray line; adapted from [8]).
A similar definition has used the power spectrum of spike trains (Fourier
transform of the autocorrelation function; see [27]).

5.1.2 Why bursts?
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We can now ask in more detail why some nerve cells generate bursts. The
answer may not be the same for every cell type, and there may even be different
uses for burst firing within the same neuron under different behavioral
conditions. At a mechanistic level, evidence has been accumulating that the
reliability of synaptic transmission can be significantly enhanced for spikes
arriving in rapid succession at the presynaptic terminal [1][28][29][30][12][31].
The physiological consequence of increased transmission probability for burst
spikes is noise filtering, where isolated presynaptic spikes can be conceived as
noise and bursts as signal [1][32]. Under this scheme, burst firing can improve
the reliability of information transmission across synapses. A recent alternative
and complementary proposal states that bursts may be a means of selective
communication between neurons [3]. If postsynaptic neurons display membrane
oscillations with cell-specific frequencies, the interspike intervals within a given
presynaptic burst may determine which of the postsynaptic cells will be induced
to spike.

But what is it that is signaled by bursts? In the case of relay cells of the lateral
geniculate nucleus, it has been shown that bursts as well as spikes generated in
tonic mode encode visual information [9]. A current hypothesis states that bursts
may signal the detection of objects to the cortex while tonic firing may serve in
the encoding of object details [9][10][33]. Another possibility is heightened
selectivity of burst spikes compared to isolated spikes as observed in cells in
primary auditory cortex that show sharpened frequency tuning for bursts [34]. In
section 3 of this chapter we will review recent work on weakly electric fish
showing that spike bursts of pyramidal cells at an early stage of electrosensory
processing extract behaviorally relevant stimulus features more reliably than
isolated spikes.

5.2 Overview of the electrosensory system

Electrosensation may seem exotic to us, but it forms an essential part of the
sensory world for a number of animal taxa. It allows them to navigate, detect
approaching predators and prey, and to communicate (for recent reviews see
[35][36]). Furthermore, some of its properties make for interesting comparisons
with other, less “exotic”, sensory systems: Similar to the auditory system, the
electrosensory system is specialized in processing fast variations in stimulus
amplitude and phase. It is quite fascinating that electrosensory processing in fish
and auditory processing in barn owls and bats have evolved similar
computational algorithms for time coding (e.g., [37][38][39]). The multiple two-
dimensional topographical representations of the sensory surface
(electroreceptors in the skin of the fish) within the brain are found similarly in
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the visual system where there are multiple topographical representations of the
retina [40]. Additionally, the principal electrosensory neurons in the hindbrain
come as ON- and OFF-types, have center-surround receptive fields, and as in the
case of mammalian thalamic neurons (e.g., [10][41][42]), their responses are
shaped by descending feedback.

5.2.1 Behavioral significance of electrosensation
Electroreception comes in two types, passive and active. The passive sense takes
advantage of the electric fields generated by living organisms or, as has been
shown in sharks, the electromagnetic field of the earth (e.g., [43]). Unlike
passive electrosensation and most other sensory modalities, active
electrosensation relies on signals originating from the animal itself. The fish
generates an electric field through discharge of an electric organ extending along
most of the caudal part of its body (Fig.3). The Gymnotiformes are one of two
groups of teleosts that independently evolved active electrosensing [44]. Fish of
the two Gymnotiform genera treated here, Eigenmannia and Apteronotus,
produce a quasi-sinusoidal electric organ discharge (EOD) waveform with
frequencies between 200 and 1200 Hz, the exact range being species-specific.

Objects or animals with impedance different from that of water perturb the
electric field surrounding a fish. Electroreceptors in the skin monitor these
distortions and thus provide information about obstacles, approaching predators,
or prey (Fig.3; [45][46][47]). Nearby conspecifics also engage in electric
communication, for example in the context of courtship [48][49][50]. Thus, the
active electrosense allows weakly electric fish to forage and to communicate
under conditions when other senses are more or less useless as is the case in
their natural habitat: They are nocturnal animals and live in turbid tropical
freshwaters, which strongly limits the usefulness of vision. Similar to
echolocation in bats, active electrosensation opens an ecological niche that is
safe from most diurnal predators. Additionally, it opens a new channel for
intraspecific communication.

Figure 3

Objects in the vicinity of a weakly electric fish distort the self-generated
electric field. The ensuing change in current flow across the skin - the
electrosensory image of the object - is monitored by electroreceptors.  a)
The sketch is a snapshot of the isopotential lines of the electric field at the
peak of an EOD cycle with an object of low conductivity distorting the field.
b) Short section of the quasi-sinusoidal EOD waveform of Apteronotus
albifrons recorded as the potential difference between an electrode next to
the head and one close to the tail. c) Sketch illustrating the relationship
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between amplitude modulation waveform (AM) and the underlying EOD
carrier signal.

5.2.2 Neuroanatomy of the electrosensory system
Two sets of primary afferents transmit information on electric field perturbations
from electroreceptors in the skin to the first central processing stage in the
hindbrain, the electrosensory lateral line lobe (ELL). So-called T-receptor
afferents fire strictly phase-locked to each cycle of the EOD, thus carrying
information about phase distortions [51]. We will, however, focus on the
amplitude-coding pathway that involves a different set of afferents, P-receptor
afferents. These nerve fibers fire action potentials in a probabilistic fashion (thus
the “P”) depending on EOD amplitude (see Figs.3c and 4b). Several thousand P-
receptor afferents carry information from all parts of the body to the ELL [52].
There, each individual fiber trifurcates and terminates in three adjoining
somatotopic representations of the fish’s skin, the centromedial (CMS),
centrolateral (CLS), and lateral (LS) segments of the ELL [53] (Fig.4a).

P-receptor afferents directly synapse onto one set of principal output cells of the
ELL, the basilar pyramidal cells or E-units (“E-xcited”; Fig.4). The other set of
output neurons, the non-basilar pyramidal cells, or I-units (“I-nhibited”),
receives indirect feedforward input from the afferents via inhibitory interneurons
[54]. Consequently, E-units fire action potentials in response to increases in
electric field amplitude, whereas I-units fire in response to decreases [55]
(Fig.4b). The spatial receptive fields of pyramidal cells are more complex than
their direct connections with primary afferents would suggest: E-units have an
excitatory center and an inhibitory surround and vice versa for I-units. This is
analogous to ON- and OFF-cells in the visual system [55][56][57][58]. A
prominent feature of both types of pyramidal cells is their extensive apical
dendrites that extend far into the molecular layer of the ELL (Fig.4a). Here,
pyramidal cells receive proprioceptive input and massive feedback from higher
centers of electrosensory processing. Descending control via the apical dendrites
has been shown to play a role in oscillatory responses of pyramidal cells, in gain
control, in shaping receptive field size, in adaptive filtering of predictable
sensory patterns, and may also be involved in a sensory searchlight mechanism
[59][60][61][62].

5.2.3 Electrophysiology and encoding of amplitude
modulations
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Behaviorally relevant amplitude modulations of the electric field induced by
objects, prey, or conspecifics cover a frequency range of up to 80 Hz [63]. With
their tonic response properties and firing rates in the range from 50 to 600 spikes
per second, P-receptor afferents appear well suited to encode these amplitude
modulations by changes in instantaneous firing rate [63][64][65][66] (see
Fig.4b). This was confirmed in studies applying linear stimulus-estimation
algorithms to the responses of P-receptor afferents to stochastic modulations of
electric field amplitude [7][8][67][68][69]. Up to 80% of the stimulus time
course can be recovered from single primary afferent spike trains. Therefore, it
seems that, prior to entering the hindbrain, electrosensory information is
faithfully encoded and undergoes very little processing.

What kind of processing takes place in the ELL? One hypothesis could be that
single pyramidal cells perform even better at transmitting detailed information
on the stimulus time course than P-receptor afferents by averaging out noise
over 5 to 20 primary afferents converging onto them [56][70]. This does not
seem to be the case when amplitude modulations are presented over large areas
of the body surface, mimicking communication signals. Linear stimulus
estimation from pyramidal cell spike trains in Eigenmannia yielded poor results
compared to primary afferents [7][8][71]. Since neighboring pyramidal cells
receive input from overlapping areas of the fish’s skin, it is conceivable that the
information is conveyed in a distributed manner. However, even when stimulus
estimation was based on pairs of spike trains from simultaneously recorded
pyramidal cells with overlapping receptive fields, the fraction of the stimulus
recovered was still well below the fraction encoded by single primary afferents
[71]. Recent studies in the CLS and LS of the related weakly electric fish
Apteronotus leptorhynchus, however, indicate that pyramidal cells may not act
as a homogeneous population in this respect. Bastian and coworkers found that
the efficiency for encoding global amplitude modulations scales with the
spontaneous firing rate of pyramidal cells (3-50 Hz) [58]. Furthermore, the
spatial extent of the stimulus seems to affect how much information a cell can
transmit about the amplitude modulations [58]. Thus, it seems possible that a
subset of pyramidal cells is able to transmit information on the electric stimulus
time course, and that the spatial extent of stimuli affects the response properties,
probably via feedback input to the apical dendrites [62]. However, even the best
performing cells observed so far do not improve on the performance of P-
receptor afferents [7][8][58][67][72].

In summary, compared to the primary afferents, pyramidal cells of the ELL are
poor encoders of the stimulus time-course. Hence, the question remains, what
kind of information do most ELL pyramidal cells transmit to the next stage of
electrosensory processing?

Figure 4
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Processing of amplitude modulations of the electric field by P-receptor
afferents and pyramidal cells in the ELL. a) P-receptor afferents enter the
hindbrain via the octavolateral nerve (VIII) and trifurcate to form three
somatotopic maps of the body surface (LS: lateral segment; CLS:
centrolateral segment; CMS: centromedial segment). A fourth map (medial
segment, MS) is formed by passive electrosensory input, which is not
treated here. The cross-section through the hindbrain of Eigenmannia
shows the layered organization of the ELL maps with the deep neuropil
layer (dnl) containing the primary afferent fibers, and the somata of the
pyramidal cells forming a distinct dark layer (pyr). Basilar pyramidal cells
receive direct input from P-receptor afferents onto their basilar dendrite,
while non-basilar pyramidal cells receive indirect inhibitory input via
interneurons. In the molecular layer (mol) descending inputs connect onto
the apical dendrites of pyramidal cells (adapted from [8]). b) Raster plots of
spike trains of P-receptor afferents, E- and I-cells in response to sinusoidal
amplitude modulations (top trace).

5.3 Feature extraction by spike bursts

5.3.1 Bursts reliably indicate relevant stimulus features
Despite their generally poor performance at encoding the time course of
amplitude modulations, inspection of pyramidal cell spike trains shows that their
responses are selective (Fig.5). E-units typically fire isolated spikes or short
spike bursts in response to upstrokes in stimulus amplitude whereas I-units fire
in response to downstrokes. Bursts consist of 2 to 10 spikes with a mean of
about 3 spikes per burst. On average, roughly 60% of the spikes fired by a given
cell occur in bursts [7]. Spatially extended upstrokes and downstrokes in
amplitude are known to be integral parts of the electrosensory input eliciting the
so-called “Jamming Avoidance Response” (JAR [73]). In case of the JAR, the
signals of two conspecifics interfere, creating a beat pattern extending over a
large part of the body. To avoid low-frequency beats, which affect the fish’s
ability to electrolocate, nearby animals can actively increase the difference
between their EOD frequencies. Localized upward and downward deflections in
EOD amplitude moving across the sensory surface, on the other hand, may
signal the presence of prey [46]. Thus, global as well as local up- and
downstrokes in amplitude are presumably important electrosensory events. It
therefore seems plausible that pyramidal cells could signal the occurrence of
these temporal stimulus features without transmitting detailed information on
the stimulus time course. Various methods are available to quantify neuronal
classification performance, for example neural network models that learn the
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optimal stimulus pattern eliciting spikes (e.g., [74]). A more direct approach
derived from signal detection theory uses a linear operation on the input signal
followed by a threshold computation. Thus, the specific issue of interest is
whether burst spikes perform better at extracting stimulus features than spikes
occurring in isolation.

Figure 5

Pyramidal cells tend to fire spikes in short bursts. Intracellular recording of
an I-type pyramidal cell in the CMS stimulated with random amplitude
modulations (top trace). Note the coupling of spike bursts and isolated
spikes to downstrokes in amplitude (adapted from [8]).

5.3.2 Feature extraction analysis
To quantify how well a spike train discriminates stimulus patterns, one first
needs to estimate the optimal stimulus feature for eliciting spikes. Here, we
describe the application of a Euclidian pattern classifier to this problem (see
[7][8] for a slightly more general method). First, the spike train, x(t), and the
stimulus, s(t), are binned so as to allow a maximum of one spike per bin. A
variable rt is defined to take the value 1 if the time bin ending at t contains a
spike and the value 0 if it does not contain a spike. Stimulus segments, st, ending
at time t and comprising ~100 bins prior to time t are assigned to one of two
ensembles, P(s| r=1) and P(s| r=0), depending on whether st preceded a time bin
containing a spike or not (i.e., rt=0 or 1; Fig.6). The feature, f, is computed from
the means, m1 and m0, of these conditional distributions P(s| r=1) and P(s| r=0):
f = m 1 - m 0. For E-units, the typical feature is a strong upstroke in stimulus
amplitude preceded by a small downstroke (Fig.6 bottom), for I-units it is a
strong downstroke preceded by a small upstroke (Fig.7a) [7][8]. It is important
to note, however, that the exact shape of the classifier depends not only on the
individual cell studied but also on the bandwidth of the stimulus [8]. Typically,
only the time bins between 0 ms (spike occurrence) and -300 ms show
significant deviations from an amplitude of 0 mV suggesting that pyramidal
cells do not integrate over longer time spans of sensory input.

To assess the separation between the two ensembles of stimulus segments, each
segment is projected onto the feature vector, f, and compared to a threshold
value, q:       h f,q(s) = <f ; s> - q,   where  < ; > denotes the scalar product. The
projection, hf,q(s), can be conceived of as a measure of similarity between a
stimulus segment and the feature vector.
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Figure 6

Computation of the Euclidian pattern classifier. For each time bin of a
given spike train the stimulus vector preceding this bin is assigned to one of
two ensembles (P(s| r=0) and P(s| r=1)) depending on whether the time bin
contains a spike or not. The Euclidian classifier is defined as the mean
stimulus preceding spikes (m1, right) minus the mean stimulus preceding
time bins without a spike (m0, left): f=m1-m0. For this E-unit, the feature is a
strong upstroke in amplitude, peaks at around –25 ms, and then returns to
0 mV. Bandwidth of the stimulus: 0-44 Hz.  Adapted from [8].

The performance of this Euclidian classifier in predicting the occurrence of
spikes is quantified using a Receiver Operating Characteristic (ROC) analysis
[7][8][75][76]. First, the conditional probability distributions of the projections,
P(hf,q(s)| r=1) and P(h f,q(s)| r=0), are plotted and compared to threshold, q
(Fig.7b). A spike is detected if hf,q(s) > 0, that is if <f ; s> is larger than the
threshold (to the right of the dashed vertical line in Fig.7b). Integrating the tail
of the distribution P(h f,q(s)| r=1) to the right of the threshold, q, yields the
probability of correct detection, PD. The right tail of the distribution P(h f,q(s)|
r=0) corresponds to the probability of false alarms, PFA. By varying the threshold
value, q, P D can be determined as a function of PFA. The resulting curves are
called ROC curves (Fig.7c). The larger the area under a given curve the better is
the detection performance. However, false alarms are not the only kind of error
that can occur. The second type of error happens when a spike is missed because
the corresponding projection value is below threshold (P(hf,q(s)| r=1) to the left
of q). Therefore, a measure of the misclassification error has to incorporate both,
the probability of false alarms and the probability of missed events: PE = 0.5[PFA
+ (1-PD)]. The best classification performance of an ideal observer corresponds
to the minimum of the plot of PE versus PFA (Fig.7d).

Figure 7

ROC analysis of feature extraction performance. a) A representative
optimal stimulus feature of an I-unit. Bandwidth of the stimulus: 0-12 Hz.
b) Probability density distributions of the projections of stimulus segments
preceding time bins containing a spike and of stimulus segments preceding
time bins without a spike (black curve). Spikes were assigned to two classes,
isolated spikes (blue) and burst spikes (red), based on the ISI histogram
(Fig.2). The probabilities of correct detection and of false alarms are
computed by integrating the tails of the probability distributions to the
right of threshold, q  (dashed vertical line):  PD=P(<f ; st> >q | r t=1),
PFA=P(<f ; st> >q| rt=0). c) ROC curves obtained by varying the threshold q
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along the abscissa in b. The dashed line indicates chance performance. d)
Probability of misclassification, PE,  versus probability of false alarm. The
best performance of the Euclidian classifier can be read from the minimum
of this plot. e) Comparison of feature extraction performance by P-receptor
afferents (white bars) and pyramidal cells (black bars). The arrows indicate
the respective median values of the two distributions. f) Distributions of the
misclassification errors for pyramidal cells from the CMS (black bars) and
LS (white bars). a-d adapted from [72]. e and f adapted from [8].

As is evident from Fig.7b, the probability distribution of stimulus projections for
burst spikes is more clearly separated from the distribution of stimuli preceding
a spikeless bin than is the one for isolated or all spikes. Consequently, the ROC
curve for burst spikes rises more steeply than the one for isolated spikes and all
spikes (Fig.7c) yielding the lowest misclassification errors (Fig.7d). The
superior feature extraction performance of burst spikes was typical for all cells
studied so far in the CMS and LS of the weakly electric fish, Eigenmannia
(overall 133 pyramidal cells [7][8][71][77]).

When the same analysis was applied to spike trains of primary afferents, they
consistently performed worse than pyramidal cells (Fig.7e) [8] suggesting that
information is filtered in different ways at the first two stages of electrosensory
processing. Feature extraction analysis also revealed differences in performance
between cells recorded in different maps of the ELL. Cells from the CMS
displayed lower misclassification errors than cells from the LS (Fig.7f) [8]. This
finding correlates well with the different behavioral significance attributed to the
two maps. The CMS has been shown by lesion experiments [78] to be necessary
and sufficient for JAR behavior, which is known to involve the correlation of
up- and downstrokes in stimulus amplitude with advances or delays in EOD
phase [73]. The LS, on the other hand, was shown to be necessary and sufficient
for the processing of electrocommunicatory signals [78], which may involve a
more complex analysis of the electrosensory input.

Recently, the analysis of electrosensory information transmission was extended
to simultaneously recorded spike trains of pairs of pyramidal cells with
overlapping receptive fields [71]. Cross-correlation analysis showed that
correlations in spike timing between cells of the same type (two E-units or two
I-units) were broad (tens of milliseconds) and were not caused by shared
synaptic input, but were induced by the independent coupling of both cells to the
stimulus. Feature extraction analysis demonstrated that spikes of two nearby
cells occurring within a coincidence time window of 5 to 10 ms significantly
improved the reliability of feature extraction compared to burst spikes of the
individual neurons (Fig.8b,c). Interestingly, a large fraction of the coincident
spikes occurred in bursts (for a coincidence time window of 5 ms, 63+15%,
mean + standard deviation; see Fig.8a). This finding supports the thesis that
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coincident bursts of spikes may constitute the most reliable neural code [1]. The
similar time scales of the typical intraburst interspike interval (10-15 ms) and of
the best coincidence time window (5-10 ms) suggest that, from the viewpoint of
the postsynaptic target, coincident spikes may be considered as “distributed
bursts” (see also [12]).

Figure 8

Feature extraction by distributed bursts. a) Fraction of coincident spikes of
two simultaneously recorded I-units from CMS with overlapping receptive
fields. Black bars: proportion of spikes of neuron A (left) and B (right)
coinciding with spikes on the respective other neuron within the time
window displayed on the abscissa. White bars: proportion of coincident
spikes that occurred in bursts. Grey bars: overall percentage of spikes that
occurred in bursts. b) Left: Minimum probability of misclassification by
coincident spikes of neurons A and B as a function of the size of the
coincidence time window. Spikes coinciding within a time window of 5-10
ms performed significantly better at feature extraction than did isolated or
even burst spikes of the individual neurons (right). c) Summary diagram of
feature extraction performance by coincident spikes of pairs of pyramidal
cells of the same type (E-E pairs and I-I pairs pooled; n=16), by burst spikes
of individual cells, and by isolated spikes of single cells (n=58). Adapted
from [71].

ROC analysis has been applied before to compare signal detection performance
by burst and tonic response modes of relay cells in the lateral geniculate nucleus
of anesthetized cats [33]. Cells were found to indicate visual stimuli more
reliably when firing in burst mode than when in tonic mode. While the role of
burst firing in the thalamus remains debated [79][80], evidence is mounting that
bursts in thalamic relay cells do occur in the wake animal and that they convey
stimulus-related information (reviewed in [10], see also [19][31][81]). It seems,
however, that bursts are much less prevalent in thalamic relay cells of awake
mammals than they are in pyramidal cells of awake weakly electric fish.
Thalamic bursts often appear to be transient responses to the beginning of
sensory events, which are then followed by tonic encoding of stimulus details
[6][10][82]. In contrast, bursts in electric fish pyramidal cell do not abate over
the course of a long stimulus but seem to be the major signaling mode employed
by those cells. The feature extraction analysis developed by Gabbiani et al. [7]
moves beyond the method employed by Guido et al. [33] by yielding
information on the optimal feature driving a given cell and on how reliably the
occurrence of this feature is indicated by different subsets of spikes in a spike
train.
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In conclusion, it appears that, at least for global modulations of stimulus
amplitude as used in the studies of weakly electric fish described above,
electrosensory information transmission undergoes a dramatic transformation at
the earliest stages of processing. The primary afferents reliably encode the
stimulus time course by their instantaneous firing rate. At the first central
nervous stage of electrosensory processing pyramidal cells extract behaviorally
relevant features from the persistent stream of afferent input and indicate their
times of occurrence to higher-order nuclei by firing short bursts of spikes and by
stimulus-induced coincident activity of groups of cells.

5.4 Factors shaping burst firing in vivo

As described for other systems [83][84][85][86], the propensity of ELL
pyramidal cells to burst is related to their morphology and seems to be under
descending control from higher centers of sensory processing. Bastian and
coworkers studied spontaneous burst firing by pyramidal cells of the CLS and
LS in Apteronotus leptorhynchus [87][16]. Spontaneous firing rate of these
neurons is negatively correlated with the size of their apical dendrite, whereas
the probability to generate spontaneous spike bursts increases with the length of
the dendritic arbor. The largest apical dendrites reach high up into the molecular
layer of the ELL (Fig.2a) [87][16]. There, the apical dendrites are contacted by
parallel fibers originating from the posterior eminentia granularis of the
cerebellum [59][60]. These parallel fibers control the spontaneous firing rate of
pyramidal neurons as well as their probability to produce spontaneous bursts
[16]. They are part of an indirect electrosensory feedback pathway, which is
thought to be involved in gain control [60]. Therefore, it is conceivable that this
indirect feedback could switch pyramidal cell responses between a bursting and
a tonic mode. Firing in burst mode would improve feature extraction
performance, whereas in tonic mode pyramidal cells might function as encoders
of stimulus time course [16]. Switching between tonic and burst mode, however,
has so far not been demonstrated for stimulus-driven pyramidal cell responses.
Recent evidence suggests that not only indirect feedback to the dorsal molecular
layer but also direct inhibitory feedback to the proximal apical dendrites of
pyramidal cells affects their firing patterns [62]. This inhibitory direct feedback
pathway supports an oscillatory component of burst responses. It is spatially
diffuse and is strongest when amplitude modulations occur over large areas of
the body surface as they do when fish engage in electrocommunication. For
localized, prey-like stimuli, however, the inhibition is only weak and does not
support oscillatory burst responses.
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5.5 Conditional action potential backpropagation
controls burst firing in vitro

Slice preparations of the ELL of Apteronotus leptorhynchus have proven
enormously fruitful in elucidating cellular and network mechanisms of
electrosensory processing (reviewed in [60][88]). The laminar organization of
the ELL allows for accurate placement of recording and stimulating electrodes
in various layers along the pyramidal cell axis (see Fig.4a). Deprived of the
natural barrage of primary sensory and feedback inputs, and only stimulated by
intracellular constant current injection, pyramidal cells in vitro display rhythmic
oscillations of the membrane potential, which periodically trigger series of high-
frequency spike bursts (30 to over 300 Hz) [88]. The frequency characteristics
of this oscillatory burst discharge (burst frequency and intra-burst spike
frequency) vary across the three topographic maps of the ELL roughly
correlating with pyramidal cell tuning properties observed in vivo [57][89][36].

5.5.1 Experimental evidence for conditional backpropagation
It was shown early on [90] that active backpropagation of Na+ spikes into the
apical dendrite is an integral part of high-frequency burst generation by
pyramidal cells, similar to what has been described for several other systems
[91]. Spikes are initiated at the soma or axon hillock and travel back into the
apical dendrite up to the first major branch points (~200 mm). Membrane
depolarization and repolarization in the dendrite are slower than in the soma and
therefore dendritic spikes are longer in duration than somatic ones. A fast
afterhyperpolarization (AHP) of the somatic membrane increases the potential
difference between the soma and the still depolarized dendrite and leads to a
sizable amount of current being sourced back into the soma where it supports a
depolarizing afterpotential (DAP; Fig.9). In the course of a burst, somatic DAP
amplitude is potentiated because of frequency-dependent broadening of
dendritic spikes. Consecutive DAPs sum up and cause the frequency of somatic
spike generation to increase. Eventually, the DAP itself will reach threshold for
spike initiation and a high-frequency somatic spike doublet will be generated
(ISI typically < 6 ms). Since the refractory period of the apical dendrite is longer
(~4.5 ms) than that of the soma (~2 ms), the dendrite does not support active
backpropagation of the second spike of the doublet, and the corresponding DAP
at the soma fails allowing the AHP to terminate the burst (Fig.9b). This
mechanism of burst generation and termination has been termed “conditional
backpropagation” [92], because backpropagation is essential for burst
production, and it is conditional on sufficiently low spike frequencies. When
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spike frequency exceeds the dendritic refractory period, backpropagation fails
and the burst is terminated.

A number of cellular components of the burst mechanism have been identified.
Na+ channels are distributed in a punctate manner along the proximal 200 mm of
the apical dendrite consistent with the finding that active backpropagation of
TTX-sensitive spikes terminates at about this distance from the soma [90]. A
candidate mechanism for the broadening of dendritic spikes is cumulative
inactivation of a dendritic K+-conductance [92]. The inactivation would slow the
repolarization of the dendritic membrane potential in a spike-frequency-
dependent manner, thus increasing the amplitude of the somatic DAP. A likely
candidate for this current is the Apteronotid homologue of the mammalian
Kv3.3 K+-channel (AptKv3.3), which is extensively distributed along the entire
axis of pyramidal cells [93][94]. Local blockade of dendritic AptKv3.3 led to
slowing of spike repolarization and increase in somatic DAP with a time-course
similar to that of a regular burst. This manipulation also lowered the threshold
for burst discharge evoked by current injection into the soma [94]. Therefore, it
seems likely that this high-voltage-activated K+ channel is either directly
involved in the mechanism of burst discharge or at the very least can modulate
the threshold for burst generation [95]. Another contribution to the potentiation
of the somatic DAP in the course of a burst comes from a persistent Na+ current
which is activated by the increasing dendritic spike duration [96]. In contrast to
other systems (for review see [97]), Ca2+ currents or Ca2+-dependent K+ currents
do not appear to be necessary for burst generation in this system [92][96][95].

The detailed knowledge of pyramidal cell morphology, the organization of
primary sensory and feedback input, and of the conductances shaping burst
firing in vitro, makes pyramidal cells ideally suited for detailed modeling of the
mechanism underlying burst firing. This mechanism differs in interesting ways
from burst generation as described in several other systems. One obvious
peculiarity of ELL pyramidal cell bursts is that ISI duration decreases in the
course of a burst (Fig.9b), a phenomenon that has not been described in any
other system so far. In vivo, however, this ISI pattern can be observed only
rarely (Krahe, unpublished observations). With natural synaptic input, other
factors like inhibition and the interplay between afferent and feedback input may
also shape the bursts and contribute to their termination. Furthermore, the basilar
dendrites of E-units warrant closer investigation since they have been shown to
be equipped with Na+ channels as well as AptKv3.3 K+ channels, and might thus
also support backpropagation and bursting in a way similar to the apical dendrite
[90][93][94] (see also [98] for similar conclusions in neocortical pyramidal
neurons).

Figure 9
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Summary of the mechanism underlying high-frequency burst generation in
pyramidal cells in vitro. a) Schematic diagram of a pyramidal cell with a
narrow spike recorded in the soma (1). The somatic spike is actively
propagated back into the apical dendrite where a much broader version of
the same spike can be recorded (2). Current sourcing from the dendrite
back into the soma causes a DAP (3). b) Top: Oscillatory burst discharge
recorded in the soma of a pyramidal cell with 0.74 nA depolarizing current
injection. Middle and bottom: Somatic and dendritic spike burst recorded
separately in two different cells. The time scales are adjusted to allow
alignment of spikes. Somatic spikes are truncated. As evident from the
dendritic recording, spike repolarization slows down in the course of a
burst allowing the DAP at the soma to potentiate. Eventually, the DAP
reaches threshold and causes a high-frequency spike doublet. Since the
dendritic refractory period is longer than the somatic one, the dendrite
cannot support active propagation of the second spike of the doublet. The
DAP fails and allows the afterhyperpolarization (AHP) to terminate the
spike burst. a adapted from [92], b adapted from [96].

5.5.2 Multicompartmental model of pyramidal cell bursts
Based on the detailed spatial reconstruction of a dye-filled E-type pyramidal cell
[99], Doiron et al. [96][100] developed a multicompartmental model that
successfully reproduces burst firing as it is observed in vitro (Fig.9). The main
goal of these studies was to identify the components of the burst mechanism that
underlie dendritic spike broadening and somatic DAP potentiation since those
are responsible for the progressive decrease in ISI duration and eventual burst
termination. A key feature of the model was the presence of fast Na+ and K+

currents in both somatic and dendritic compartments, to account for Na+ action
potential generation and backpropagation (Fig.10a). In order to achieve the
narrow somatic and broader dendritic spike shapes (see 5.5.1), the time
constants of the active conductances in the dendrite had to be increased relative
to the soma. This also yielded a relatively longer refractory period for the
dendritic spike compared to the somatic one.

While the core model outlined above reproduced key features of the somatic and
dendritic response, it failed to generate spike bursts. Doiron et al. [100] were
able to exclude a number of potential burst mechanisms described for other
systems: Ca2+- or voltage-dependent slowly activating K+ channels, slow
inactivation of the dendritic Na+ channel, and slow activation of the persistent
Na+ current. Finally, modification of the dendritic delayed rectifier channel
yielded burst properties corresponding to the in vitro findings: A low-threshold
slow inactivation of the K+ conductance led to dendritic spike broadening in the
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course of a burst and to a corresponding increase in the DAP amplitude, which
eventually triggered a doublet, leading to dendritic spike failure and burst
termination due to the AHP. Whereas slow activation of the persistent Na+

current proved insufficient to elicit proper bursting, it was recently shown to be
an important component of the DAP potentiation [96]. It is activated by the
broadening of dendritic spikes and boosts the sub-threshold depolarization of the
somatic membrane. Thereby it largely determines the time it takes to reach
threshold for doublet firing. Since the doublet terminates the burst, the persistent
Na+ current thus controls burst duration. With the interburst period being largely
fixed by the duration of the AHP, the persistent Na+ current also determines
burst oscillation period [96]. Since it can be activated by descending feedback to
the apical dendrites [99][101], this provides a potential mechanism for
controlling burst firing depending on behavioral context.

To summarize, the key features of the pyramidal cell burst mechanism are i) a
dendritic Na+ conductance that supports active backpropagation of spikes into
the dendrite and that feeds the somatic DAP, ii) a slow cumulative inactivation
of a delayed rectifier current which leads to dendritic spike broadening in the
course of a burst, thus potentiating the somatic DAP, iii) a shorter refractory
period for somatic spikes compared to dendritic ones renders backpropagation
conditional on the instantaneous firing rate, iv) the rate of the DAP potentiation,
which is part of a positive feedback loop in which dendritic spike broadening
activates a persistent Na+ current, which further boosts depolarization. The slow
dynamics of the persistent Na+ current largely control burst duration and burst
frequency.

Figure 10

Multi-compartmental model of burst generation. a) The model was based
on the detailed reconstruction of a dye-filled E-type pyramidal cell [99]. The
distribution of ionic channels along the neuron’s axis is indicated in the
insets. The detailed placement of Na+ and K+ channels in separate
compartments of the proximal dendrite is shown on the left. b) The model
reproduces the increasing firing frequency in the course of a burst with a
doublet at the end and a burst AHP (top). The dendritic delayed-rectifier
conductance, gDr,d , shows cumulative inactivation as the burst evolves
(middle).  The dendritic voltage-gated Na+ conductance, gNa,d , fails when the
somatic ISI is within its refractory period (bottom). c) Summary graph
showing the decrease in peak conductance of gDr,d and gNa,d as a function of
spike number for the burst shown in b. Whereas gDr,d inactivates in a
cumulative way, gNa,d decays much more gradually but is completely shut
off by the high-frequency doublet. Adapted from [100].
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5.5.3 Reduced models of burst firing
Detailed biophysical models are powerful tools for probing the understanding of
cellular mechanisms at a microscopic scale. However, they are computationally
too complex for modeling of large networks or for analyzing the behavior of
single cells from a dynamical systems perspective. Having understood the key
mechanisms, it is often possible to reduce a detailed biophysical model to its
essential components and then apply dynamical systems analysis to the lower-
dimensional model [102]. The multi-compartmental model described above has
undergone two such reductions, first to a two-compartment model, termed a
“ghostburster” for reasons explained in more detail below [103], and then to an
even simpler two-variable delay-differential-equation model [104].

To model the generation of the somatic DAP, only a somatic and one dendritic
compartment representing the entire apical dendritic tree are needed (Fig.11a)
[103]. Soma and dendrite were equipped with fast Na+ channels, delayed
rectifier K+ currents, and passive leak current. Current flow between the
compartments followed simple electrotonic gradients determined by the
coupling coefficient between the two compartments, scaled by the ratio of
somatic to total model surface (see also [29][86][105]). Thus, the entire system
was described by only six nonlinear differential equations using modified
Hodgkin/Huxley kinetics [106]. To achieve the relatively longer refractory
period of the dendrite [92], the time constant of dendritic Na+ inactivation was
chosen to be longer than somatic Na+ inactivation and somatic K+ activation.
The key element for the burst mechanism was the introduction of a slow
inactivation variable for the dendritic delayed rectifier current, whose time
constant was set to about 5 times slower than the mechanisms of spike
generation. In this configuration, the two-compartmental model reliably
reproduced the potentiation of the somatic DAP, which eventually triggers the
firing of a spike doublet, the burst termination due to failure of backpropagation,
and the rapid onset of the AHP [103] (see Fig.9b).

To study the burst dynamics, the ghostburster model was treated as a fast-slow
burster [102][107], separating it into a fast subsystem representing all variables
related to spike generation, and a slow subsystem representing the dendritic K+

inactivation variable, pd. The fast subsystem could then be investigated using the
slow variable as a bifurcation parameter. The dashed lines in Figure 11b show
the quasi-static bifurcation diagram (dashed line) with maximum dendritic
membrane voltage as a representative state variable of the fast subsystem, and pd
as the slow subsystem. For constant values of pd > p d1, there exists a stable
period-one solution. At pd = pd1 the fast subsystem transitions to a period-two
limit cycle. This corresponds to intermittent doublet firing with dendritic spike
failure, since for pd < p d1 dendritic repolarization is sufficiently slow to cause
very strong somatic DAPs capable of eliciting a second somatic spike after a
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small time interval (~ 3 ms). The overlaid burst trajectory (solid line) shows the
beginning of the burst on the right side (upwards arrow). The maximum of the
dendritic membrane voltage decreases for the second spike of the doublet
(compare Fig.9b), which occurs at pd < pd1. The short doublet ISI is followed by
the long interburst ISI, the slow variable recovers until the next burst begins.
Because pd is reinjected near an infinite-period bifurcation (saddle-node
bifurcation of fixed points responsible for spike excitability), Doiron et al. [103]
termed this burst mechanism “ghostbursting” (“sensing” the ghost of an infinite-
period bifurcation [108]). Thus, the two-compartment model nicely explains the
dynamics of pyramidal cell bursting observed in vitro by the interplay between
fast spike-generating mechanisms and slow dendritic K+-channel inactivation.

Figure 11

Two-compartment model of burst generation. a) Sketch of the somatic and
dendritic compartments linked by an axial resistance. b) The dashed lines
show the quasi-static bifurcation diagram with a representative of the fast
subsystem, the maximum dendritic membrane voltage, as a function of the
slow subsystem, the dendritic K+ inactivation variable, pD. Overlaid is a
single burst trajectory (solid line; burst begins with the upwards pointing
arrow on the right). Adapted from [103].

In a further reduction of the model, Laing and Longtin [104] replaced the six
ordinary differential equation model by an integrate-and-fire model consisting of
a set of two discontinuous delay-differential equations. An interesting aspect of
this model is that it uses a discrete delay to mimic the ping-pong effect between
soma and dendrite. When a spike occurs, the somatic membrane potential is
boosted by a variable amount but only if the preceding ISI was longer than the
dendritic refractory period and only after a certain delay. The amount of somatic
boosting depends on the firing history of the neuron. For long ISIs, it decays
towards zero, for short ISIs it builds up.

Bifurcation analysis of both the ghostburster and the delay model revealed
properties that contrast with other models of burst generation. When increasing
amounts of current are injected into the soma, both reduced models move from
quiescence for subthreshold current through a range of tonic periodic firing into
irregular bursting (Fig.12) [103][104]. The transition from quiescence to tonic
firing is through a saddle-node bifurcation of fixed points after which the
systems follow a stable limit cycle. The periodic attractor increases
monotonically in frequency as current is increased. The fact that the models pass
from quiescence to repetitive firing through a saddle-node bifurcation is
characteristic of class I excitability [102][107]. Accordingly, the neurons are
able to fire at arbitrarily low rates close to the bifurcation, which is also
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observed when injecting small amounts of current into pyramidal cells in the
slice preparation [92]. At higher current the models move through a saddle-node
bifurcation of limit cycles after which they follow a chaotic attractor
corresponding to burst firing. For very large input currents, the cells periodically
discharge spike doublets (right of the dotted line in Fig.12 a, b). This
progression from quiescence through periodic firing and bursting to periodic
doublet discharge closely reproduces the behavior of pyramidal cells in the slice
preparation [92]. Similar to the ghostburster model, the delay integrate-and-fire
model also allows the generation of a wide ‘gallery’ of bursts of different shapes
indicating that pyramidal cells may be able to adjust burst duration and
frequency depending on context.

The simplicity of the delay model also allowed examination of the effects of
periodic forcing corresponding to injection of sinusoidal current at the soma.
Depending on the frequency of sinusoidal forcing, the threshold for burst firing
could be increased or decreased relative to the threshold in the unforced system.
This finding suggests that depending on the frequency of amplitude modulations
of the electric field, the threshold for burst firing of pyramidal cells might shift.

The most appealing aspect of the delay model is its simplicity and computational
efficiency. Since the model captures the basic properties of burst firing
described by the more elaborate ionic models [100][103], it may be suitable for
use in larger-scale models of electrosensory processing.

Figure 12

Instantaneous firing frequency versus amount of injected current for a)
ghostburster model, and b) two-variable delay-differential-equation model.
Both models show an absolute threshold for firing, above which they
discharge periodically. At some intermediate current (I ~ 8.5 for the
ghostburster model and I ~ 1.22 for the delay model), the models transition
through a saddle-node bifurcation of limit cycles into irregular bursting. At
very high input currents they begin to fire doublets (right of the dotted line
in a and b). Doublet firing involves two distinct ISI values, the long inter-
doublet ISI (upper line) and the short doublet ISI (lower line). a adapted
from [103], b adapted from [104].

5.6 Comparison with other bursting neurons

Bursting neurons have been described in a variety of systems including the
crustacean stomatogastric ganglion [109], the lamprey spinal cord [110], dorsal
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root ganglion cells [111], thalamic reticular and relay cells [2][10], and
pyramidal neurons in several cortical areas and layers [25][84][85]. Naturally,
the depth of understanding of the underlying ionic mechanisms is not the same
for every system. However, modeling approaches based on experimental
findings have been helpful in elucidating cellular and dynamical aspects of burst
firing in a number of different preparations. In the following, we discuss three
aspects of burst firing to which the electric fish preparation has brought new
perspectives: 1) burst firing can be caused by a “ping-pong” interplay between
soma and dendrite. 2) ghostbursting offers novel dynamics for oscillatory
bursting. 3) the underlying ionic mechanisms shape the ISI sequence within the
burst.

5.6.1 “Ping-pong” between soma and dendrite
The term “ping-pong” [29] refers to the interplay between soma and dendrite
that has been shown to be an essential part of the burst mechanism in a number
of cell types. The idea that soma-dendritic interactions shape neuronal response
properties became prominent when intracellular labeling and electrophysiology
were combined (e.g., [85][112]). Based on reconstructions of various neocortical
cell types, Mainen and Sejnowski [86] showed that neurons sharing the same
ionic channel distributions but differing in dendritic morphology displayed a
wide range of response properties from regular firing to rhythmically bursting.
Dendritic Na+ channels proved to be necessary for bursting since they support
backpropagation of spikes into the dendrite and the subsequent current flow
back into the soma. The somatic DAP can then feed further spikes, similar to the
mechanism described above for ELL pyramidal cells [92][100]. Two basic
mechanisms for boosting the DAP seem to be realized in bursting neurons. First,
voltage-activated dendritic Ca2+ channels have been found to increase the
somatic DAP in pyramidal cells in layer 5 of neocortex [30][113], in the
subiculum [114] and at least in a fraction of CA1 pyramidal cells of the
hippocampus [115][116]. Second, the somatic DAP can be enhanced by
persistent Na+ currents as observed in cortical chattering cells [117], in layer 3
sensorimotor cortical neurons [118], some hippocampal CA1 neurons
[119][120], and in ELL pyramidal cells [96]. In these latter cases, Ca2+ has been
shown not to be a necessary component for bursting. Wang [29] suggested that
spike-triggered Ca2+ influx might be too slow to support bursting at high g-
frequencies (20-70 Hz) observed in chattering cells [25][117][121]. The same
reasoning could apply to bursting of ELL pyramidal cells in vitro, which shows
oscillations in the g-range [89][90], and which is Ca2+-independent [92].

These systems all share a somatic DAP induced by current flow from the
dendrite. They differ, however, in several other aspects such as, for example,
mechanisms of burst termination. In layer 3 cells of sensorimotor cortex, Ca2+-
activated K+ channels repolarize the dendrite and stop the current flow towards
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the soma [118]. This mechanism had been predicted by a multi-compartmental
modeling study of layer 5 intrinsically bursting pyramidal cells [98]. Based on a
two-compartment model of neocortical chattering cells, Wang [29] suggested
that bursts are terminated when a dendritic voltage-dependent K+ channel is
sufficiently activated to repolarize the dendritic membrane. Hence, the above
described burst termination by failure of backpropagation due to the relatively
long dendritic refractory period constitutes a hitherto unknown mechanism [92].

For thalamic relay cells it was long believed that dendrites did not play a major
role in burst generation since bursting persists in acutely isolated cells devoid of
dendrites [97]. In a recent combined in vitro and modeling study, however,
Destexhe and coworkers showed that the low-threshold Ca2+ channels
underlying burst generation had to have a roughly 5 times higher density in the
dendrite than in the soma to yield Ca2+ spikes comparable to those seen in intact
relay cells [122]. The actual burst consists of fast Na+ and K+ activity riding the
crest of the Ca2+ spike. At depolarized membrane potentials, the underlying IT
channel is inactivated and the cells respond in tonic mode [10]. Deinactivation
requires hyperpolarization for at least 50-100 ms. Therefore, thalamic bursting is
characterized by very long ISIs preceding the actual burst.

It should be mentioned that soma-dendritic interactions are not the only route to
bursting. Some cell types, such as cerebellar granule cells, seem to be
electrotonically too compact to support a ping-pong mechanism [86][123].
Instead, a persistent Na+ current in conjunction with a slow Ca2+-independent K+

current can cause oscillations, with fast Na+ spikes riding on top of the
oscillations [123].

5.6.2 Dynamical properties of burst oscillations
On a more macroscopic scale, bursting in ELL pyramidal cells seems unique in
two respects. First, ISI duration decreases within bursts, which is atypical.
Second, the changes in firing properties with increasing input current exhibit an
unusual bifurcation structure. As shown in the slice preparation [92] and in both
the reduced models [103][104], the firing properties pass from quiescence for
subthreshold input current through tonic firing for intermediate current levels to
bursting. Other systems, in contrast, have been shown to pass from quiescence
through bursting to tonic firing (e.g. [2][25][29][98][113][123][124][125]).
Accordingly, for a given input current, bursting systems are usually described as
switching between quiescence (fixed point) and spiking (limit cycle) [107]. As
shown by the reduced ELL pyramidal cell models, however, the fast subsystem
can always follow a limit cycle [103][104]. Since the slow subsystem is itself
oscillating, it modulates the period of the fast subsystem and forces it to pass
near the ghost of an infinite-period bifurcation, which yields the long interburst
intervals, as opposed to bifurcating to a fixed point solution.
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5.6.3 Intra-burst ISI sequences
Within a burst fired by an ELL pyramidal cell, instantaneous firing rate
increases until a spike doublet eventually terminates the burst. Due to its long
refractory period, the dendrite fails to actively backpropagate the action
potential allowing the AHP to set in and repolarize the soma (Fig.9b). From a
dynamical systems point of view, the burst termination can be understood as a
bifurcation from a period-one to a period-two limit cycle of the fast, spike-
generating, system (Fig.11b). In all other models of bursting neurons, bursts end
with a transition form a period-one limit cycle to a fixed point (quiescence;
[107]). This corresponds to the observation that, in most systems, bursts begin
with a very high instantaneous firing rate and then slow down. One reason for
the slow-down can be the gradual activation of a dendritic K+ channel which
reduces current flow to the soma and increases the time to reach threshold for
action potential firing [29][98][118]. Alternatively, spike backpropagation, and
with it the somatic DAP, can fail when dendritic Na+ channels cumulatively
inactivate [114][126][127] or when synaptic inhibition sufficiently
hyperpolarizes the dendritic membrane [128][129][130].

5.7 Conclusions

Two main lines of evidence indicate that bursts can play an important role in
neuronal information transmission. First, bursts have been shown to surpass
single spikes in their information carrying performance [7][8][9][33][34].
Besides acting as unitary events, burst duration, that is the number of spikes,
may also be a mode of information transmission [14][131]. Second, high-
frequency burst firing increases the reliability of synaptic transmission at
unreliable synapses [1][12][28][29][30][31]. The development of the technique
of feature extraction analysis has given us a powerful tool to quantify how
reliably neurons indicate the occurrence of certain stimulus features without
prior knowledge of what these features look like [7][8][72]. Its application to
neuronal responses in various behavioral contexts may teach us how the possible
contribution of burst firing (or other firing patterns) to information transmission
changes with changing behavioral context.

Compartmental modeling based on detailed reconstructions of neuronal
morphology has demonstrated that dendritic structure is a major determinant of
a neuron’s firing properties [84][85][86][91][132]. From a mechanistic point of
view, reduced models, such as two-compartment models and point neurons,
have been effective at revealing the underlying dynamics of burst generation. As
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illustrated here, detailed multi-compartmental modeling can aid in
understanding the ionic and structural mechanisms underlying particular
neuronal firing patterns [96][100] and, when that is achieved, simplified models
can help in elucidating the dynamic properties of these mechanisms [103][104].
The ghostburster model and the delay model reproduce burst discharge as it is
observed in vitro in spite of their simplicity, suggesting that the essential
components of the intrinsic burst mechanism are understood.

For pyramidal cells in the ELL of weakly electric fish, there are first indications
that the probability of burst generation is under descending control and depends
on the spatial geometry of the stimulus [16][62][92][94]. Similar observations
have been made for thalamic neurons (e.g., [10][17][42]) and nerve cells in the
subthalamic nucleus [21]. Modeling studies will be key in the exploration of
how descending control shapes burst firing. Interestingly, ELL pyramidal cells
possess a number of spatially distinct input areas that could be controlled
separately depending on behavioral context [59][60].

One of the most urgent questions to be addressed is whether or not the
mechanisms that shape bursting under in vitro conditions are also the key
determinants of burst firing in the intact animal. Of course, the ionic channels
responsible for conditional backpropagation will be at work in vivo, too.
Nevertheless, most pyramidal cells when recorded in vivo do not show
shortening of ISIs in the course of a burst, at least under the stimulus conditions
studied so far [7][8][16]. The models described above therefore need to be
refined. They need to address the effects of naturalistic synaptic input from the
sensory afferents, including the effects of indirect inhibitory input via local
interneurons, and the possible contributions of descending control. Descending
control could act directly via synaptic excitation and inhibition, but also
indirectly by modulations of synaptic transmission [59] or by inducing
phosphorylation of the AptKv3.3 K+ channel [94]. The development of the
reduced models may also make it possible to construct larger network models
that could still incorporate naturalistic spike train statistics. Two construction
blocks for such a network model could be the delay-differential equation model
of an ELL pyramidal cell [104] and a recently developed simple model of P-
receptor afferents that captures much of the experimentally observed firing
dynamics [133].
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