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Impact of neural noise on a sensory-motor pathway signaling impending collision
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Jones PW, Gabbiani F. Impact of neural noise on a sensory-motor
pathway signaling impending collision. J Neurophysiol 107: 1067–1079,
2012. First published November 23, 2011; doi:10.1152/jn.00607.2011.—
Noise is a major concern in circuits processing electrical signals,
including neural circuits. There are many factors that influence how
noise propagates through neural circuits, and there are few systems in
which noise levels have been studied throughout a processing path-
way. We recorded intracellularly from multiple stages of a sensory-
motor pathway in the locust that detects approaching objects. We
found that responses are more variable and that signal-to-noise ratios
(SNRs) are lower further from the sensory periphery. SNRs remain
low even with the use of stimuli for which the pathway is most
selective and for which the neuron representing its final sensory level
must integrate many synaptic inputs. Modeling of this neuron shows
that variability in the strength of individual synaptic inputs within a
large population has little effect on the variability of the spiking
output. In contrast, jitter in the timing of individual inputs and spon-
taneous variability is important for shaping the responses to preferred
stimuli. These results suggest that neural noise is inherent to the
processing of visual stimuli signaling impending collision and con-
tributes to shaping neural responses along this sensory-motor path-
way.

lobula giant movement detector; descending contralateral movement
detector; variability; single neuron computation

NEURAL PATHWAYS SPECIALIZED in the detection of threats and
escape must be reliable; thus it is especially important for their
function to remain undisrupted by noise. Indeed, all sensory
and motor systems have evolved to function with a certain
amount of noise. Sensory signals are inherently noisy due to
the stochastic activity of transduction channels (Baylor et al.
1980; Laughlin and Lillywhite 1982; Rieke and Baylor 2000)
and the sensory input itself (e.g., photon noise; Baylor et al.
1979; Fuortes and Yeandle 1964; Scholes 1965). Because of
the stochastic properties of ion channels, synaptic transmission,
and other neuronal components, further noise is necessarily
introduced through neural pathways (Fatt and Katz 1952;
Rosenmund et al. 1993; White et al. 2000). Yet, neurons and
neural circuits carry out computations reliably, and in some
cases, optimally (Beck et al. 2008; Laughlin 1981; Osborne et
al. 2005; Sengupta et al. 2010; for related energy constraints,
see Niven et al. 2007).

The organization of a neural circuit can reduce noise levels
in specific circumstances. If individual neurons of a population
carry independent noise, then averaging will lower its level
(Field and Rieke 2002; Laughlin et al. 1987). Depending on
specific circumstances, nonlinear transformations such as spike
thresholding and feedback loops could amplify or dampen

noise (Faisal et al. 2008). Since such neural components, both
noise reducing and amplifying, are widespread and interwoven
in neural circuits, it is hard to predict a priori how noise levels,
and conversely, neural signal reliability, will change through a
processing pathway.

Thus we investigated the effects of neural noise in a sensory-
motor pathway of the locust that is specialized for detecting
objects approaching on a collision course and triggering escape
behaviors. Earlier studies have looked at visual response vari-
ability across several stages of a neural pathway (Borghuis et
al. 2009; Kara et al. 2000). However, none of them could span
from the sensory periphery to neurons with direct motor system
outputs, as is possible in insects. Locusts possess a pair of
identically firing visual interneurons associated with each com-
pound eye called the lobula giant movement detector (LGMD)
and the descending contralateral movement detector (DCMD;
Fig. 1A) (O’Shea and Rowell 1976; Rowell and O’Shea 1976).
The role of these identified neurons in detecting objects ap-
proaching on a collision course and triggering escape behaviors
is well documented (Fotowat et al. 2011; Gabbiani et al. 1999;
Rind and Simmons 1992; Santer et al. 2006; Schlotterer 1977).
They respond vigorously to simulated approaching objects
(looming stimuli) with a firing rate that rises smoothly, peaks,
and then falls; the timing of the peak signaling when the
stimulus has reached a threshold angular size on the animal’s
retina (Gabbiani et al. 1999). The LGMD receives roughly
15,000 excitatory inputs responding to luminance changes in
small areas of the visual field and inhibitory inputs whose
population is thought to signal the angular size of the stimulus
(Gabbiani et al. 2002, 2005; Hatsopoulos et al. 1995; Straus-
feld and Nässel 1981). The DCMD relays this information to
motor neurons in the mesothoracic and metathoracic ganglia
controlling the wings and hind legs (Burrows 1996; O’Shea et
al. 1974; Simmons 1980). We also know that trial-to-trial
variability in the spike trains of the DCMD can predict if and
when the animal will jump (Fotowat et al. 2011). Thus vari-
ability in the LGMD/DCMD responses is relevant to the
behavioral output of this circuit.

The excitatory pathway converging onto the LGMD/DCMD
has several features that could influence the amounts of vari-
ability observed at each stage and how it is propagated. There
is a 6-to-1 convergence from the photoreceptors to the second-
order visual neurons, the large monopolar cells (LMCs) of the
lamina (Meinertzhagen 1976; Strausfeld and Nässel 1981).
There is also a transition from graded potential to spiking
responses between the LMCs’ dendrites and their targets in the
medulla, not unlike that between bipolar and retinal ganglion
cells in the mammalian retina. Although few recordings from
the medulla have been obtained (James and Osorio 1996) and
little is known about its connectivity, a divergence of �1 to 5
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is likely at this stage (Peron et al. 2009). Finally, there is a
massive convergence of medullar inputs onto the LGMD. Thus
we wanted to experimentally observe the effect of these cel-
lular and network features on the propagation of variability and
to understand how it influences the responses of the LGMD to
looming stimuli. We find that the signal-to-noise ratio (SNR)
resulting from stimulation of small parts of the visual field
decreases from the periphery through the pathway and that

SNRs of responses to looming stimuli are not much higher.
Modeling of the LGMD and its inputs during looming suggests
that jitter in the single-facet response times is important for
shaping looming responses and that variability of the looming
responses is largely independent of variability in the strengths
of the summed inputs.

MATERIALS AND METHODS

Animal dissection and electrophysiology. Locusts were mounted in
a plastic holder and dissected as previously described (Peron et al.
2007). Sharp microelectrodes were used for intracellular recordings
from photoreceptors, LMCs (80–240 M�, 2 M K-acetate/0.5 M KCl),
and the LGMD (8–30 M�, 2 M K-acetate/0.5 M KCl or 3 M KCl for
voltage clamp). Intracellular signals were low-pass filtered (mem-
brane potential: 10 kHz; current: 5 kHz) and digitized (20 kHz).
Photoreceptor and LGMD recordings were made using borosilicate
electrodes (1.2/0.8-mm and 1.2/0.5-mm outer/inner diameters, respec-
tively; WPI, Sarasota, FL), whereas LMC recordings were made using
aluminosilicate (1.0-mm outer diameter; Harvard Apparatus, Holli-
ston, MA). An Ag-AgCl wire was used as reference. Current-clamp
recordings were made in discontinuous current clamp (DCC; at �25
kHz switching frequency) or bridge mode using an SEC-10LX am-
plifier (NPI, Tamm, Germany). Voltage-clamp recordings from the
LGMD were made using discontinuous single-electrode voltage
clamp (dSEVC; at �25 kHz). All dSEVC electrodes had �20-M�
resistances, and electrode resistance (bridge) or capacitance (DCC/
dSEVC) was fully compensated in the bath, immediately before tissue
penetration. The noise levels resulting from electrodes in the bath had
standard deviations (SD) of 0.15 mV for high-resistance photorecep-
tor/LMC electrodes, 0.06 mV for LGMD DCC, and 0.18 nA for
LGMD dSEVC. These values were measured before penetration of
photoreceptors and LMCs and thus represent an upper bound on the
electrode noise, since the electrode resistance typically decreased
following tissue penetration. We used these electrode noise levels to
correct the corresponding spontaneous membrane potential noise
measurements under the assumption that they add independently; that
is, the measured variance equals the sum of the electrode noise
variance and the cell membrane potential (or current) variance.
Evoked responses were not corrected for electrode noise because it
had a negligible effect on them. Intracellular recordings were obtained
from the lobula and lamina through the desheathed optic lobe and
from the retina through a small (�50 � 50 �m) hole just below the
dorsal rim of the eye. Photoreceptor recordings were identified by
their resting potential (�40 mV, depending on ambient light levels)
and depolarizing responses to luminance increases. The photoreceptor
recordings included in this study had characteristics of high-quality
recordings: light-adapted resting potentials of 40–50 mV, which
dropped by an average of 17 mV when background light was re-
moved, had strong transient responses to full-contrast luminance
changes (Supplemental Fig. S1) and showed no appreciable change in
their resting membrane potential over �20 min of recording. (Sup-

Fig. 1. Spontaneous variability observed throughout an excitatory visual
pathway involved in collision detection. A: schematic illustration of the
pathway with its main anatomic and signaling properties. The excitatory input
is successively relayed from photoreceptors to large monopolar cells (LMCs),
which both respond in a graded manner under our stimulus conditions, and
medullary T cells before impinging on the large dendritic fan of the lobula
giant movement detector (LGMD; dark gray shading). The 2 smaller dendritic
fields receive inhibitory inputs (light gray shading). B, top: two 400-ms long
traces illustrating the spontaneous membrane potential (Vm) variability of a
typical photoreceptor; bottom: histogram showing the distribution of Vm for the
same cell relative to the resting potential. C: spontaneous Vm traces and
histogram for a recording from a LMC. D and E: similar traces and histograms
of spontaneous membrane currents (Im; voltage clamp) and Vm (current clamp)
in the LGMD. SD, standard deviation for the illustrated experiments.
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plemental data for this article is available online at the Journal of
Neurophysiology website.) The extracellular potential of the lamina
modulates in phase with a flashing light stimulus, allowing identifi-
cation of LMCs by a resting hyperpolarization and transient, anti-
phase responses to light flashes (Supplementary Fig. S1). In the fly,
two subtypes of LMCs have been shown to generate small (�10 mV)
spikes in response to light pulses when dark adapted (Uusitalo et al.
1995). The LMC cells presented here, recorded under light-adapted
recording conditions, did not exhibit such active properties. LGMD
recordings were identified by the cell’s 1:1 spike correspondence with
the simultaneously recorded extracellular DCMD signal (O’Shea et al.
1974). The cell was penetrated in the proximal region of the excitatory
dendritic field, with spike heights varying between 20 and 50 mV. The
LGMD is an electrotonically extended neuron receiving distributed
synaptic inputs that are finely organized (Peron et al. 2007, 2009).
Thus different visual stimulation regimes will differentially affect its
local membrane resistance and impact the membrane potential noise
recorded by an electrode in its main excitatory dendritic branches.
One of the purposes of this study was to characterize these changes
and relate them to presynaptic and LGMD firing rate variability.
Stable LGMD recordings could be maintained for typically �60 min.
Extracellular signals were acquired as previously described. The
procedures for intracellular LGMD recordings while presenting loom-
ing stimuli were slightly different than described above and were
previously described by Gabbiani et al. (2002).

Visual stimulation. Visual stimuli were generated using custom
software on a personal computer running a real-time operating system
(QNX 4; QNX Software Systems, Ottawa, Canada). Looming stimuli
were presented on a cathode ray tube (CRT) monitor (200 Hz,
luminance range 2–90 cd/m2). The looming stimuli used were ex-
panding dark squares on a bright background. If � denotes the angular
size of the square on the retina, the stimulus size follows �(t) �
2tan�1(l/vt), where l is the half-size of the simulated object, v is the
simulated approach velocity, and t is time during the approach. By
convention, v is negative for an approaching object and t is 0 at the
time of collision with the animal (Gabbiani et al. 1999). �(t) is fully
described by the half-size-to-speed ratio, l/|v|, with units of time.
Assuming a constant simulated object size, the lower the l/|v| value,
the faster the object is approaching and the more suddenly it expands.

Stimulation at single ommatidium resolution was achieved by
projecting an image generated using a digital light-processing (DLP)
projector (LT140; NEC, Tokyo, Japan) through a custom-built micro-
scope (Jones and Gabbiani 2010) mounted horizontally on a vibration-
isolated optical table (luminance range 4–2,530 lux). Both the CRT
monitor and DLP projector were calibrated to ensure linear, 6-bit
resolution control over light levels. The ambient light level for
single-facet experiments was set by a ring light mounted around the
objective of the microscope. This level was constant at 490 lux,
equivalent to dim daylight. Locusts stimulated using the CRT monitor
were adapted to a slightly different light level, determined by the
brightness of the monitor (280 lux). The mean resting membrane
potential values recorded under these two conditions were very
similar, �40.4 and �39.1 mV for single-facet and monitor-stimulated
photoreceptors, respectively.

Single-facet stimuli. Each stimulus spot was 2 � 2 pixels (5 � 5
�m) in size, positioned in the center of each ommatidium. Each
stimulus was a 1,500-ms light pulse from baseline (4 lux) to a variable
maximum (�2,530 lux). Since the looming stimuli that we want to
emulate are dark objects on a light background, we focus exclusively
on the responses resulting from the return of this light pulse to its dark
baseline (“off” responses; Fig. 2, A and B). Luminance changes had a
variable duration, ranging from instantaneous (0 ms) up to 183 ms.
Their time course had the profile of a cumulative Gaussian, with a SD
equal to one-quarter of the luminance change duration. This recreates
the luminance change caused by an edge moving across the approx-
imately Gaussian spatial receptive field of photoreceptors (Burton and
Laughlin 2003; Wilson 1975). Multiple facets or adjacent facet pairs

Fig. 2. Time course and dependence of variability on Vm during single-facet
stimulation. A and B: top traces show the stimulus luminance presented to a
single facet over time. The luminance is initially bright and returns to its
background (backgnd) value, causing the “off” response along the visual
pathway. Darker colors denote slower luminance changes; brighter colors are
faster. Middle traces depict correspondingly colored mean photoreceptor (A)
and LGMD responses (B), averaged over all cells. The mean Vm are given
relative to rest. Photoreceptors are initially depolarized, since the initial light
level is above its background value. Bottom traces show the intertrial SD of the
responses, averaged across recordings. C: response means and SD for the
LGMD Vm (from B) plotted against each other, with each black point showing
a time sample (selected at 2.5-ms intervals). The blue line shows the average
resulting SD within 1.25-mV mean response bins for bins that contain �0.05%
of the data. The dashed red line indicates the spontaneous noise level (Fig. 1E).
D: same analysis as in C for photoreceptors (green), LMCs (red), and the
LGMD Vm (blue; replotted from C).
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were stimulated when recording from the LGMD (4 maximum, with
at least 2 interposed facets). Each facet was stimulated less than once
per minute to avoid local habituation (O’Shea and Rowell 1976).
Stimuli were presented every 5 s for LMC and photoreceptor exper-
iments. Trial types within all experiments were pseudorandomly
interleaved. Pseudolooming stimuli spanned three facet rows on the
eye, each 15 facets long, with each stimulus point positioned over a
single facet. The three stimulus points in each column were stimulated
simultaneously, with each column being presented a more rapid
luminance change, a sequence that was designed to mimic the accel-
eration caused by a looming edge. See Jones and Gabbiani (2010) for
more details on this stimulus and LGMD responses to it.

Data analysis and statistics. All data analysis was carried out using
custom MATLAB programs (MathWorks, Natick, MA). All analyses
of stimulus-evoked membrane potentials, both experimental and sim-
ulated, were performed on traces that had been median-filtered (8-ms
window) to remove spikes. This window size was chosen as the
shortest length able to fully exclude LGMD spikes from the traces.
DCMD spikes were detected from extracellular nerve cord signals by
thresholding the waveforms. Instantaneous firing rates (IFR) were
calculated by convolving individual spike trains with a Gaussian
window as in Gabbiani et al. (1999) (SD � 20 ms).

We utilized nonparametric statistical tests on our experimental data
(Lehmann 1998). The Wilcoxon rank-sum test was employed for
comparisons of two independent data sets (significance level denoted
by PRS). For comparisons of more than two conditions, we used the
Kruskal-Wallis test (significance level denoted by PKW), a nonpara-
metric alternative to the analysis of variance (ANOVA). For the data
in Figs. 4 and 5, where there are multiple cell types across several
conditions, we used a two-way ANOVA to look for main effects and
then verified the results with a Kruskal-Wallis test across cell types on
the instantaneous (0 ms) condition and across transition durations for
each cell type. Multiple comparison testing was done using Tukey’s
honestly significant difference (HSD) criterion to determine pairwise
differences between recording types (significance level denoted by
PHSD). Because of the low number of LMCs that we were able to
stably record (n � 3), we do not have the power to detect small
differences in tests involving those recordings.

Simulations. Simulations were performed using a compartmental
model of the LGMD in the NEURON simulation environment (see
Fig. 6A; Hines and Carnevale 1997). The compartmental model is
based on that described by Peron et al. (2009). Briefly, it has a
spike-initiation zone (SIZ) segment containing potassium and sodium
conductances of Hodgkin-Huxley (HH) type, as well as a voltage-
gated calcium conductance and a calcium-sensitive potassium con-
ductance mediating spike frequency adaptation. The SIZ is connected
at one end with an axon containing HH-type channels, and at the other
end with a passive excitatory dendritic tree (Peron and Gabbiani
2009a). An earlier model by Wang (1998) served as the basis for the
functional form and parameters of the channels, with constraints
specific to the LGMD derived from our previous work (Gabbiani and
Krapp 2006; Peron et al. 2007). For further details on this modeling
aspect, see Peron and Gabbiani (2009a, Supplemental Material). The
rake-shaped dendritic tree, simplified from the actual anatomic shape,
is where it receives retinotopically mapped excitatory input (Krapp
and Gabbiani 2004; Peron et al. 2009). A square region of visual space
from �50° to �50° elevation and 40–140° azimuth was mapped onto
this dendritic tree, which has 20 straight dendritic branches, each 20
compartments in length. Excitatory input elevation is mapped across
dendrites, whereas azimuth is mapped along each dendrite’s length,
with frontal inputs arriving more distally and posterior ones arriving
proximally. Inhibitory inputs were activated in the compartments
immediately proximal to the intersection of the dendritic branches but
distal to the SIZ. All synaptic inputs were modeled as synaptic
conductances with the time course of an �-function (e.g., chapt. 2 of
Gabbiani and Cox 2010).

Spontaneous synaptic activity, both inhibitory and excitatory, was
generated to reproduce the level of spontaneous noise observed in
LGMD current-clamp recordings. The visually driven excitatory syn-
aptic input during looming was generated using luminance changes
resulting from a looming stimulus sweeping across a simulated array
of facets with realistic sampling of visual space, with six synapses per
facet (Krapp and Gabbiani 2004). Each facet had a two-dimensional
Gaussian receptive field (SD � 3/4°) over which it integrated stimulus
luminance. The single-facet stimulation experiments were used to set
the parameter values (magnitude, latency, and jitter) for individual
synaptic inputs of the model. These parameters were dependent on the
luminance change duration at individual facets, fitted to experimental
data. In the fly, photoreceptor response dynamics have been reported
to vary with location on the eye (�20%, front vs. back and side;
Burton et al. 2001). Our photoreceptor recordings were carried out on
the side of the eye, which also receives the bulk of inputs caused by
looming stimuli approaching from the side in our simulations. Thus
slight variations in photoreceptor responses as a function of eye
location are not likely to affect our modeling results. Inhibitory
synaptic inputs had a time course identical to that of the area (number
of facets) covered by the looming object. They were triggered with a
constant delay of 70 ms after the stimulus luminance reached its
midpoint at each model facet, roughly 5 ms longer than the minimal
excitatory input delay. This delay is consistent with experimental
inference of inhibitory timing (Gabbiani et al. 2005). Their magnitude
was constant throughout the stimulus, set to produce looming re-
sponses that had firing rates and peak times similar to those in
experiments. Inhibitory synaptic strength variability was set to have
an SNR of 20 and jitter of 10 ms. Simulations were run 50–500 times
to accurately determine the variability in the responses. For simula-
tions shown in Fig. 8 without temporal jitter, a set of synaptic timings
was generated and held constant for groups of 50 repetitions, for
which response variability was measured. The results were then
averaged for 10 groups of simulations and across l/|v| values. Model
output was processed in the same way as experimental data. Confi-
dence intervals (95%) were obtained for measurements of the model’s
responses by bootstrapping (resampling 5,000 times). Code for repro-
ducing the model and figures using model data will be deposited on
ModelDB (http://senselab.med.yale.edu/modeldb).

RESULTS

We wanted to quantify the variability of neural responses
throughout the excitatory visual pathway leading to the LGMD
(Fig. 1A). Therefore, we recorded intracellularly from three
cell types in the optic lobe of the locust: photoreceptors, LMCs
of the lamina, and the excitatory dendritic field of the LGMD
itself in both current- and voltage-clamp configurations. This
allowed us to assess neural variability in LGMD responses and
(directly or indirectly) at each stage in the pathway giving
excitatory input to the LGMD. The intracellular recordings
were selected specifically for their stable resting membrane
potentials and responses for the duration of data collection. The
data come from 7 photoreceptors, 3 LMCs, 22 LGMD neurons,
and 28 extracellular DCMD neurons recorded in the locust
Schistocerca americana. Different analyses of the data de-
scribed in this article have been previously published (intra-
cellular LGMD recordings, Gabbiani et al. 2002; other record-
ings, Jones and Gabbiani 2010).

Spontaneous membrane potential variability. We first estab-
lished a baseline for the variability levels by quantifying the
spontaneous membrane potential noise present in the neurons.
The measurements were taken from the 400-ms period imme-
diately preceding each visual stimulus presentation (for a total
of about 24 s per individual cell). We then compiled distribu-
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tions of the membrane potential (Vm) relative to rest for each
recording (Fig. 1, B–E). Mean spontaneous noise levels in
LMCs were about twice that of photoreceptors (pooled across
experiments: SD � 0.43 and 0.24 mV, respectively; corrected
for electrode noise: SD � 0.40 and 0.19 mV, respectively),
whereas in the LGMD it was also about twice that of the LMCs
(SD � 1.05 mV pooled across experiments; unchanged after
correction for electrode noise). The spontaneous noise levels
for each cell type were significantly different from each other
(PRS � 0.02). The Vm distributions of photoreceptors and
LMCs are quite symmetric (Fig. 1, B and C), whereas those
from the LGMD are skewed in the direction of excitatory
events, which is evident in the current (Im) and Vm traces (Fig.
1, D and E). Ambient light levels during these recordings were
at dim daylight levels (see MATERIALS AND METHODS), so the
noise levels reflect daytime conditions with an unchanging
light level. Our results for photoreceptors and LMCs were
generally consistent with earlier results obtained at similar light
levels in photoreceptors (locust: Faivre and Juusola 2008, Fig.
4A; fly: Burton and Laughlin 2003) and in fly LMCs (Fig. 9 of
Laughlin et al. 1987). From these recordings, we found that
spontaneous membrane potential noise levels increase along
the excitatory pathway leading to the LGMD.

Membrane potential variability to single-facet visual stimulation.
The unit of spatial resolution in the locust visual system is the
single ommatidium (facet), with each of the eight underlying
photoreceptors transducing the same light signal through a
single light-collecting structure, the fused rhabdom (Land and
Nilsson 2002; Shaw 1968). Moving edges in the visual world
cause luminance changes in each photoreceptor’s receptive
field whose duration depends on the speed of motion (Burton
and Laughlin 2003; Jones and Gabbiani 2010). To understand
the variability caused by such stimuli in photoreceptors and
downstream neurons, we repeatedly presented luminance de-
creases localized over single facets with a range of durations,
as would result from dark edges moving through photoreceptor
receptive fields at different speeds (Fig. 2, A and B, top). These
stimuli thus mimic the range of speeds experienced by photo-
receptors across the retina during a looming stimulus, since the
angular velocity of its edges increases rapidly near projected
collision (Gabbiani et al. 1999; Jones and Gabbiani 2010). In
LMCs, the same stimuli will stimulate the center of their
receptive field, which can be expected to play a dominant role
in their response to looming stimuli based on the detailed
analysis of their properties available in flies (Dubs 1982;
Laughlin 1994; Shaw 1984; Srinivasan et al. 1982). In the
LGMD, each such stimulus represents an elementary compo-
nent of a looming stimulus, allowing assessment of the impact
that their spatiotemporal integration has on its membrane po-
tential and firing rate noise.

As shown in Fig. 2A, middle, photoreceptor Vm changes
tracked changes in light levels and hyperpolarized to lumi-
nance decreases. The slopes of their membrane potential
changes depended on the duration of the luminance change
(Supplemental Fig. S1, A–C; Jones and Gabbiani 2010). Under
our recording conditions, LMCs are also graded potential
neurons, with largely transient responses that are of the oppo-
site polarity to those of photoreceptors (Juusola et al. 1995;
Laughlin et al. 1987). They thus depolarized in response to the
same luminance decreases, and the size of this transient re-
sponse also varied with the duration of the luminance change

(Supplementary Fig. S1, D–F; Jones and Gabbiani 2010). The
LGMD responded with transient depolarization and sometimes
spiking to both single-facet luminance increases and decreases
(Fig. 2B, middle; Supplementary Fig. S1, G–I). The synaptic
currents recorded in voltage clamp to the same stimuli were
also transient and excitatory (Fig. 2F of Jones and Gabbiani
2010).

To examine the temporal profile of the variability in each
cell’s responses, we computed the intertrial SD of the response
for each point in time. We then averaged these traces across all
recordings of each type. Figure 2, A and B, bottom, show the
resulting response SD in photoreceptor and LGMD recordings.
The intertrial SD starts at levels slightly greater than those
measured for the spontaneous period. In both cell types, vari-
ability increased with the strength of the response. To quantify
the relationship between membrane potential and variability,
we further plotted these two measures against each other for
each point in time during the stimulus presentation. Figure 2C
shows this analysis for LGMD recordings. The black cloud
shows each time point, with the blue line showing the mean
variability as a function of membrane potential in 1.25-mV
bins. Figure 2D shows the mean variability for our photore-
ceptor, LMC, and LGMD recordings. This analysis reveals that
the LGMD variability increases as a function of response
magnitude more quickly than in photoreceptors or LMCs. The
differences in baseline variability are also evident in the ver-
tical positions of these relationships. We thus conclude that
membrane potential noise in response to single-facet visual
stimulation also increases along the excitatory pathway leading
to the LGMD.

SNRs of specific response features along the excitatory
pathway. Although membrane potential change and variability
are correlated, we could not tell from the previous analysis
what aspects of the responses are variable. In addition, our goal
was to focus on those aspects that are important for the
encoding of looming stimuli under the bright-light, high-
contrast conditions characterizing our looming stimuli. On the
basis of these premises, we measured several features of
single-trial responses selected for their relevance to the encod-
ing of looming stimuli along the pathway. In photoreceptors,
we measured the slope of the response, since it carries infor-
mation on edge speed that is extracted in the peak LMC
responses (Jones and Gabbiani 2010; Juusola et al. 1995).
Accordingly, we also measured Vm peaks of LMCs, as well as
Vm and Im peaks of the LGMD. The timing of single-facet
responses synchronizes inputs impinging onto the LGMD and
plays a role in its tuning to looming stimuli (Jones and
Gabbiani 2010). We thus measured the response onset in
photoreceptors and the timing of peak responses in LMCs and
the LGMD. Finally, the width of the single-facet response is
one of the factors that determine their summation within the
LGMD. We therefore measured the full width at half-height for
the LMC and LGMD responses, as well as the response
duration for photoreceptors. Examples of single-trial traces and
these measurements are given in Fig. 3A. For each stimulus
condition we then computed a mean, SD, and SNR such that
SNR � mean/SD for each of these measures. We then com-
pared these quantities across the different stages of the LGMD
visual pathway to track changes in the encoding of their
associated features. The SNRs we defined also characterize
performance in related signal detection tasks (e.g., chapt. 24
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and 25 of Gabbiani and Cox 2010; or chapt. 4 of Wickens
2002), although this is not central to the subsequent analysis.

The normalized response strengths (slope or peak) for each
condition are shown in Fig. 3B and the corresponding SNRs in
Fig. 3C. Response strength fell off as the single-facet lumi-
nance changes became slower, with photoreceptor slopes drop-
ping off more sharply than responses in downstream cells. The
dependence of response strength on luminance change duration
for voltage-clamp and current-clamp measures in the LGMD
was quite similar. The SNRs of response strengths to single-
facet stimuli were smaller for recordings further along the
visual processing pathway (2-way ANOVA, P � 0), and
individual comparisons yielded significant differences between
photoreceptors and the LGMD Im and Vm (PHSD � 0.05).
Photoreceptor slope SNRs were typically in the range of 10–25
(median � 22.9 across all conditions), whereas the SNR of
LGMD response peaks were on average �5 (median � 4.0).
The peak SNR, however, was not statistically dependent on the
speed of the luminance change for any recording type (PKW �
0.36). To consider the possibility that this observed SNR
difference might merely be due to the response feature mea-
sured (slope vs. peak) in different recording types, we calcu-
lated the slope SNRs for our LMC and LGMD Vm responses.
We did not find higher SNRs (median � 3.1 and 1.2 for LMC
and LGMD, respectively). Similarly, calculating the SNR

based on response peaks for photoreceptors yielded very sim-
ilar values as for the slope (median peak SNR � 22.6).

The magnitudes, variability, and SNRs of the other response
features, timing and width, are shown in Fig. 4. These SNRs,
like those calculated from response magnitudes, provide a
useful metric of how reliable their associated response features
are. The two basic questions that we wanted this data to answer
were 1) Does the SNR/variability of these features change
through the visual pathway? If so, between which cell types?
And, 2) Does the SNR/variability change with the luminance
change duration? We found that the SD of response timing and
width (Fig. 4, B and E) increased through the visual pathway
and that the SNRs of response timing and widths (Fig. 4, C and
F) changed as well (across cell types: PKW � 1.9 � 10�5 for
the SD of response timing at instantaneous luminance changes;
response width SD: PKW � 3.3 � 10�4; timing SNR: PKW �
6.6 � 10�10; response width SNR: PKW � 1.9 � 10�5). For
both features, photoreceptors had lower levels of variability
and higher SNRs than both LGMD Im and Vm (PHSD � 0.05).
The LGMD Im and Vm did not exhibit any significant differ-
ences from each other, and individual tests did not find differ-
ences with LMCs except for the LGMD Im in the case of
response timing SD and SNR (PHSD � 0.05).

Response timings and widths increased with luminance
change duration for photoreceptors and the LMCs (Fig. 4, A

Fig. 3. Variability and signal-to-noise ratio (SNR) of response features to single-facet stimuli. A: representative traces for each cell type showing the trial-by-trial
variability of responses to an instantaneous luminance decrease at a single facet (0-ms duration). The stimulus occurs at the time the traces begin. Trial averaged
responses are shown in black and 3 individual trials in gray. Measured features are depicted in red for each trial: for photoreceptor traces, they are the response
slopes from 25–75% of the response height; for LMC and LGMD traces, they are the peaks (�) and response widths (full width at half-height, FWHH). The
SNR is noted for the peak and slope features for the experiments shown. It is defined as the mean divided by the SD of each measured feature. B: relative response
strengths (photoreceptor slopes; peak heights for other recording types) to single-facet luminance changes of varying duration. For each box plot, the central
horizontal line denotes the median and the box extent depicts the 25th (p25) to 75th percentile (p75) data range. Whiskers show the range of data not considered
outliers, and plus signs represent outliers, i.e., points �1.5 (p75 � p25) times away from lower (p25) or upper (p75) data quartile. Responses are normalized to
the mean of the population distribution (at 0-ms duration) for each recording type (photoreceptors, 5.5 mV/10 ms; LMCs, 7.2 mV; LGMD Im, 2.0 nA; LGMD
Vm, 9.3 mV). C: SNR as a function of luminance change duration for the recording types. Box plots conventions are as described in B. The dashed line shows
the mean SNR of the LGMD Vm peak for pseudolooming stimuli, a stimulus type that targets 45 facets in a pattern that mimics some aspects of a looming
stimulus. There is a significant effect of recording type at 0-ms luminance change duration (*PKW � 0.0023, corrected for multiple comparisons using HSD
criterion). See Data analysis and statistics for definitions of probability statistics.
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and D). LGMD response timings increased with luminance
change duration, but response widths were constant. We ob-
served a large dependence on both cell type and luminance
change duration for the variability in response timing (Fig.
4B). Response timing variability was dependent on lumi-
nance change duration for all recording types (LMC: PKW �
0.01, others: PKW � 4.71.7 � 10�6). The SNRs of both
measures (Fig. 4, C and F) were in most cases unchanged
across the range of luminance change durations, with the
only exception being the SNR of the LGMD Im response
width (PKW � 1.7 � 10�4).

LGMD SNRs vary little with stimulus type. The LGMD has
a much larger receptive field than cells earlier in the visual
pathway and responds much more robustly to its preferred
looming stimuli than to single-facet stimuli. Thus there is the
possibility that it encodes its preferred stimuli more reliably,
resulting in looming responses having higher SNR values than
those to single-facet stimuli. To examine this possibility, we
compared the SNRs of LGMD responses to single-facet stimuli
(0-ms condition) with those evoked by two types of stimulated
approach, looming and pseudolooming stimuli (see MATERIALS

AND METHODS). Both of these stimuli activate much larger
portions of the retina and contain accelerating motion for
which the LGMD is selective (Jones and Gabbiani 2010; Peron
and Gabbiani 2009b; Simmons and Rind 1992). This compar-
ison is shown in Fig. 5. The looming and pseudolooming
stimuli had slightly different l/|v| values, so we grouped the
responses into two speed categories, very rapid approaches and

slower ones (l/|v| 	 10 and 40 ms, respectively). Because these
stimuli produced significant LGMD spiking, we were able to
compute the peak SNR for both the instantaneous firing rates
and the underlying Vm, allowing us to contrast them.

The peak SNR values for firing rates were similar across
stimulus types both for fast and slow approaches and were
similar to those of the single-facet Vm. The SNRs for looming
Vm responses were higher than for single-facet responses
(slow: PRS � 0.017, fast: PRS � 0.008) but also higher than
those for looming firing rates (slow: PRS � 0.04, fast: PRS �
0.002). Consequently, the peak SNR of the LGMD spiking
output was no different than the peak SNR of strong single-
facet responses (slow: PRS � 0.48, fast: PRS � 0.27). There
was no significant elevation in the peak SNR values of pseu-
dolooming responses (Vm or IFR) relative to single-facet re-
sponses. Thus the LGMD’s preferred stimuli, which activate
many single facets, do not evoke more reliable spiking re-
sponses than the membrane potential deflections resulting from
single-facet inputs.

Modeling LGMD looming responses. We built a model of
the LGMD visual pathway to address the following question:
given the variability observed in individual neurons to the
single-facet signals, how reliable should the LGMD responses
to looming stimuli be? The model consisted of a realistic
sampling of visual space, which was used to trigger a set of
appropriately timed and weighted synaptic inputs, based on the
luminance time course at each model facet, to a compartmental
model of the LGMD. This model had an elaborated, although

Fig. 4. Variability of response widths and timing. A and D: distributions of latencies (photoreceptor response onset, response peak for other recordings) and
response widths (FWHH) for different recording types. B and E: distributions of the SD in each experiment for these measures. C and F: corresponding SNRs
for the same measures. Box plot conventions are as described in Fig. 3.
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simplified, dendritic structure (Fig. 6A; Peron et al. 2009).
Spontaneous and visually evoked inputs were modeled inde-
pendently. Spontaneous activity was randomly generated at a
constant rate, excitation and inhibition balanced, to produce the
level of spontaneous membrane variability found in vivo (Fig.
6B). We determined the appropriate level of excitatory drive by
simulating single-facet visual stimuli and adjusting the synap-
tic strengths to produce responses evoking one or two action
potentials, as in many of our recordings (Fig. 6B). Variability
of the synaptic input strength and timing for each facet was
also chosen to closely match the single-facet responses ob-
served in vivo.

We next constructed a set of simulated looming evoked
responses (Fig. 6C). The pattern of synaptic input to looming
stimuli was determined using the properties of single-facet
responses recorded in the LGMD under voltage clamp (Figs. 3
and 4). Specifically, excitatory inputs were triggered by lumi-
nance changes beginning at each individual facet, with mag-
nitudes and latencies that were variable throughout the loom
and based on the speed of luminance changes occurring at each
individual facet in the model. Inhibitory input latencies and
magnitudes were constant throughout the stimulus, triggered
with a constant delay after the stimulus luminance reached its
midpoint. The variability in the excitatory synaptic parameters
was set to match that observed during single-facet stimulation
(Fig. 6B), and the inhibitory variability was set to similar
levels. Further details of the model are given in MATERIALS AND

METHODS. This pattern of synaptic stimulation preserved stim-
ulus-induced correlations between different facet inputs to the
LGMD, which have been shown to play a role in its tuning to
looming stimuli (Jones and Gabbiani 2010). It does not take
into account possible interactions between adjacent facet in-
puts, but such interactions have not been found to impact
LGMD responses (Jones and Gabbiani 2010). Another dy-
namic lateral inhibitory interaction (O’Shea and Rowell 1975)
is also likely to play a minor role in the responses of the LGMD
to looming stimuli (Gabbiani et al. 2002).

We found that this simple input structure produced re-
sponses that well matched those of the LGMD. The response

time course follows the same rise and fall in firing rate, with
the peak time linearly related to the size-to-speed ratio (l/|v|) of
the stimulus (Fig. 6D). Also, the variability in the timing of the
peak firing rate increased with l/|v|, consistent with DCMD
recordings (Fig. 6F; Gabbiani et al. 1999). The range of
SDpeak time values observed in model responses was also sim-
ilar to those observed in vivo. The SNRpeak of the response Vm
and IFR departed slightly from the data: they were about twice
as high as those observed in vivo. The relationship between the
two is, however, the same, with the SNRpeak of the Vm being
higher than the SNRpeak of the IFR (Fig. 6E). We thus conclude
that the model adequately reproduces the LGMD responses to
looming stimuli.

Impact of input variability on model output. The model
includes temporal jitter in the synaptic inputs to the LGMD, as
observed in the single-facet response data (Fig. 5A). For
instantaneous luminance changes, the variability of the LGMD
Vm peak time was 3.9 ms (median); therefore, we set the
minimum jitter of the synaptic inputs to produce a similar jitter
in single-facet simulations (SDjitter � 6 ms). This peak time
variability increased when the luminance changes were slower
(Fig. 4B), and we incorporated this into our model using the
fitted slope of the linear relationship between the SDpeak time
and the luminance change duration, (0.19; dimensionless since
both variables have units of time). If we ignore the experimen-
tal relationship, instead setting the synaptic jitter to be constant
and low throughout the looming stimulus, then the model fires
bursts of spikes early in the stimulus (Fig. 7A). This contrasts
with the gradual buildup seen in vivo. Such bursting behavior
is consistent with LGMD responses to a modified looming
stimulus in which luminance changes early in the stimulus
occur more quickly than in a normal looming stimulus (“con-
stant-rate looming” in Fig. 4 of Jones and Gabbiani 2010 ).

We also included variability in synaptic input strengths, as
might arise from variability in quantal number, quantal size,
stochastic receptor activation, or other synaptic transmission
parameters. We initially set the variability of the excitatory
synaptic strength (SDgsyn � meangsyn /SNRgsyn) to be roughly
equal to that of the LGMD single-facet responses, SNRgsyn �

Fig. 5. Comparison of LGMD variability for
several stimulus types. Distributions of SNRpeak

values are shown for single-facet, pseu-
dolooming, and looming stimuli. A: values for
looming stimuli with a half-size-to-speed ratio
(l/|v|) of 10 ms and pseudolooming stimuli
with an equivalent l/|v| value of 15 ms. The
single-facet SNRpeak distributions for 0-ms
luminance changes is plotted for comparison.
B: values in response to slower approaching
stimuli. Looming stimuli had an l/|v| of 40 ms
for the instantaneous firing rate (IFR) mea-
surements and 30 ms for Vm measurements.
Pseudolooming stimuli had an equivalent l/|v|
of 50 ms. Pseudolooming stimuli in A and B are
the “fast” and “medium” speed stimuli described
in Jones and Gabbiani (2010). *PRS � 0.05. Box
plot conventions are as described in Fig. 3.
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5. However, the model’s responses are quite insensitive to
variability in the underlying synaptic input strengths, as shown
in Fig. 7, B and C. Varying the parameter SNRgsyn caused a
significant change in the reliability of single-facet responses
(data not shown) but did not cause a significant change in any
of the aspects of the model’s response to looming that we
examined. This insensitivity can be partially explained by the
number of synaptic inputs the model receives. The model
LGMD, at the time of its firing rate peak, receives �40
independently variable synaptic inputs, resulting in the trial
mean input being �6.3 (
40) times less variable than the
individual inputs.

To further dissect which sources of variability contributed to
the output variability of our model, we ran the simulations
while eliminating specific sources of variability (Fig. 8). Elim-
inating variability in the excitatory synaptic strength (SDgsyn �
0) changed the SNRpeak and SDpeak time measures very little,
consistent with responses being insensitive to the value of
SNRgsyn. Keeping the synaptic timings constant made a much
larger difference, which contributed most of the decrease in
variability observed when both the synaptic strength and tim-
ing variabilities were eliminated. Taking away inhibitory input
variability of both synaptic timing and strength also had a

relatively small effect on the model’s output variability. The
strongest source of variability came from the spontaneous
activity, accounting for about 35% of the SDpeak time and
capping the SNRpeak at about 150% of its value in the full
variability model. Thus synaptic strength variability levels
within the range of those observed in vivo are not important for
determining looming response SNR in the model. Instead, the
firing rate SNR and variability in the timing of the peak are
determined in a large part by the ongoing spontaneous activity
and jitter in the timing of stimulus driven inputs.

DISCUSSION

We have shown that both spontaneous and response vari-
ability increase along the visual processing pathway that in-
cludes the LGMD and DCMD. The reliability of several
aspects of responses drops, including strength, width, and
timing. The variability of response timing also depends on
luminance change duration, a single-facet proxy of edge speed.
Increased luminance change duration, as would result from a
slower moving stimulus, evokes responses with greater tem-
poral jitter. At the level of the LGMD, summation of many
inputs does boost response reliability, but spiking output from

Fig. 6. Modeling LGMD responses. A: schematic of the active compartmental model of the LGMD used. Excitatory input impinges retinotopically onto the
rake-shaped dendritic tree, and inhibitory synapses are made onto the dendritic segment immediately proximal to the rake. The model is modified from the one
used in Peron et al. (2009). Details can be found in MATERIALS AND METHODS. KCa, calcium-sensitive potassium conductance; SIZ, spike-initiation zone. Bottom
inset indicates orientation of rake relative to visual space. A, anterior; V, ventral; P, posterior; D, dorsal. B: single-facet responses from the model. Short trains
of synaptic conductances (3 events at 200 Hz) from 6 inputs are triggered at the marked onset time (vertical gray line) with 6-ms temporal jitter. Individual
synaptic conductances are drawn from a normal distribution with an SNR of 10 and a mean adjusted to obtain responses of a strength similar to those observed
in vivo. Rasters are shown from 20 repetitions (top); the model Vm for 5 repetitions are shown (gray) with the mean model Vm (black); and the SD (�) of the
Vm are shown (bottom). Synaptic parameter values were chosen to closely match the strength and variability of responses in vivo. C: looming responses in the
model. Traces (top) show the angular size of the square looming stimulus for 3 parameter values (l/|v| � 10, 40, and 80 ms in green, red, and blue, respectively).
Spike trains (middle) are shown from the stimulated LGMD for 100 simulations from each stimulus. Graph (bottom) shows the Gaussian-convolved IFR with
envelopes showing the SD. D: relationship of the looming stimulus parameter and timing of the peak rate. Model peak time means and SD (error bars) are shown
(black) with the best-fit linear relationship (black dashed line; fit slope, 4.5; intercept, �31.0 ms; angular threshold, 25.2°). The experimentally observed linear
relationship from Jones and Gabbiani (2010) is shown in gray. E: the SNR of the firing rate and Vm peaks as a function of l/|v|. F: the SD of the peak times for
IFR and Vm. Error bars in E and F show bootstrapped 95% confidence intervals for plotted values.
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the neuron is no more reliable than the underlying Vm from
single-facet inputs. Modeling the LGMD excitatory input
structure as simply reflecting the properties of single-facet
luminance changes, with inhibition corresponding to stimulus
size, recreates many of the LGMD’s looming response prop-
erties. Manipulating single sources of variability in the model
identify jitter in LGMD excitatory inputs and spontaneous
activity as the main drivers of LGMD’s spike rate variability.

Increase in spontaneous noise through the visual pathway.
We observed that the spontaneous membrane potential gradu-
ally became more variable as we recorded farther along the
visual pathway. The membrane noise increased from the pho-
toreceptors to the LMCs. Each LMC receives input from six
photoreceptors, which might cancel out a portion of photore-
ceptor noise, assuming their independence and adequate aver-
aging at the level of LMCs. Although locust photoreceptors are

electrically coupled within a single ommatidium, the “bumps”
resulting from individually resolved photon absorption events
are uncorrelated in dark-adapted conditions, suggesting func-
tional independence (Lillywhite 1977, 1978). Additionally, in
flies, electrical coupling between photoreceptor terminals
within a lamina cartridge has been suggested to reduce cou-
pling due to extracellular potential changes (Weckström and
Laughlin 2010) by allowing changes in intracellular potential
to match those in the extracellular space (van Hateren 1986).
However, detailed studies of synaptic transmission at the
photoreceptor-LMC synapse in the fly have shown it to have a
high gain (Juusola et al. 1995; Laughlin et al. 1987). Further-
more, LMC cutoff frequencies are higher than those produced
by photoreceptor transduction noise, meaning that both the
signal and noise are subject to amplification (Laughlin et al.
1987). These factors may contribute to the noise increase
observed in our experiments. We also found spontaneous noise
to be larger in the LGMD than in LMCs. This most likely
results from the relatively high median size of single sponta-
neous excitatory postsynaptic membrane potential deflections
(�0.75 mV; see Fig. S5 in Peron et al. 2009).

Decrease in single-facet SNR through the visual pathway.
We observed that the SNRs of single-facet visual responses
decreased markedly as we recorded further from the visual
periphery. This was true when measuring response peaks,
timings, and widths (Figs. 3 and 4). These SNR decreases were
mostly evident in comparisons between LGMD recordings and
those from photoreceptors. This does not, however, preclude a
modest change in SNR between photoreceptors and LMCs,
since we were able to obtain only a small number of stable
LMC recordings despite much effort (3 cells from 60 animals).

Fig. 7. How input variability shapes LGMD model responses. A: the spiking
and IFR of the LGMD model if single-facet luminance change-dependent jitter
is removed. Instead, the synaptic times are jittered in the model by an amount
drawn from a normal distribution with an SD set at a constant value of 4 ms.
B and C: the variability of LGMD model responses is insensitive to changes in
the variability of the underlying synaptic input strength. The SNR of the peak
firing rate (B) and SD of the time of the peak firing rate (C) are shown for
simulations where the synaptic input strength has different levels of variability,
as parameterized by the SNR of the excitatory synaptic input strength
(SNRgsyn). Darker lines indicate higher SNR values. Measurements using both
the Vm (orange) and IFR (grays) are shown. Values are compiled using 100
simulations per condition. Error bars show bootstrapped 95% confidence
intervals on the values.

Fig. 8. Sources of variability in the LGMD model. The model was run with
specific sources of variability eliminated. “Full” (F) refers to the model with all
sources of variability. Other conditions eliminate variability in excitatory
synaptic maximum conductance (F-Exc Gmax), excitatory synaptic timing
(F-Exc Jitter), both excitatory timing and conductance variability (F-Exc Var),
the inhibitory variability (F-Inh Var), and all visually driven variability
(spontaneous only). Variability was estimated for groups of 50 simulated
approaches and averaged over 10 groups. A: the relative SNRpeak resulting
from elimination of sources of variability. The height of each bar shows the
difference from the full condition, normalized by the difference between full
and spontaneous only. The SNRpeak (averaged over l/|v|) values of the full
condition are 14.0 and 9.9 for Vm and IFR, respectively, whereas the SNRpeak

values for the spontaneous-only condition are 19.0 and 14.0. B: the proportion
that the SDpeak time value is decreased from that of the full condition for each
condition shown. Bar height indicates the difference from full model
SDpeak time for each condition, divided by the full model SDpeak time value
(SDfull � SDcondition)/SDfull. SDpeak time values for the full model were 38.8 and
45.5 ms for Vm and IFR, respectively (averaged over all 3 l/|v| values).
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The reason for their extreme difficulty is unclear; to our
knowledge, their are only two reports of locust LMC record-
ings prior to the ones carried out here (James and Osorio 1996;
Shaw 1968). Although the paucity of data from LMCs warrants
caution in interpreting the results, their overall trend well fits
the pattern seen along the pathway from photoreceptors to
LGMD current-clamp data.

Studies in the fly visual system concluded that the SNR of
their LMCs is higher than those of single photoreceptors due to
an averaging of photoreceptor variability (�160% in light-
adapted conditions; Fig. 10 of Laughlin et al. 1987; Fig. 3 of de
Ruyter van Steveninck and Laughlin 1996). In these studies,
the SNR was defined either from sensitivity measurements for
contrast steps eliciting responses close to membrane potential
noise threshold (Laughlin et al. 1987) or through time-aver-
aged wide-band random stimuli optimized to maximize infor-
mation rates (de Ruyter van Steveninck and Laughlin 1996).
Whereas these studies characterized contrast coding (in 2 very
different regimes), the present study used light steps at a fixed
maximal contrast with time-varying transition speeds. Thus our
SNRs describe how reliably the luminance transition speed or
duration is conveyed by various features of the neural re-
sponses at successive stages of the visual system, and cannot
be directly compared with the SNRs of these studies. Further-
more, the SNR improvement observed in fly LMCs may
originate from independent photoreceptor sampling related to
the neural superposition structure of the eye (Braitenberg 1967;
Kirschfeld 1967). The impact of the apposition structure of the
locust eye and of intrafacet photoreceptor coupling (Lillywhite
1978; Shaw 1967, 1969) on signal improvement at the level of
the LMCs remains to be determined.

We did not see any change in SNR between Im and Vm
within the LGMD. We know that there are active conductances
in the LGMD dendrites open around the resting potential, such
as hyperpolarization-activated cation channels (Dewell RB and
Gabbiani F, unpublished observations). This suggests that
these conductances do not introduce significant amounts of
noise.

One potential source of the decrease in SNR observed
throughout the pathway is the transition from graded potential
to spiking neural responses at the level of the medulla. Such a
decrease would be consistent with the fact that information
rates measured in fly photoreceptors and LMCs are much
higher than those found in spiking neurons (de Ruyter van
Steveninck et al. 1997; see also DiCaprio et al. 2007 for a
graded potential/spiking neuron comparison in another sys-
tem). Confirmation of an eventual SNR decrease at that level
will have to await electrophysiological recordings from med-
ullary neurons synaptically connected with the LGMD. Such
recordings have not proven practical up to this point but would
clearly provide critical information on the functioning of the
excitatory pathway leading to the LGMD.

Analogous decreases in SNR, or increases in variability,
through multiple stages of a visual pathway have been ob-
served in other systems. Kara et al. (2000) observed that the
Fano factor (FF), i.e., the ratio of across-trial spike count
variance to spike count mean, increases from the retina to the
lateral geniculate nucleus to primary visual cortex. That study,
while reporting cortical FF values that were lower than many
others in the literature, measured equivalent SNR values lower
than what we observe in the LGMD single-facet responses

(2–3.75 at �40-Hz firing rate). It has also been found that
along the pathway from cones to bipolar cells to retinal
ganglion cells (RGCs), sensitivity to small luminance changes
declines through the pathway, approximately fourfold at each
stage (Borghuis et al. 2009). These declines were mainly
attributed to fluctuations in synaptic vesicle release at both
synapses and spike generation within the RGCs. Decreases in
SNR through a processing pathways are not inevitable, how-
ever, with various studies describing behavior that seems to be
limited by noise present in the sensory system, far from motor
outputs (Churchland et al. 2006; Osborne et al. 2005).

Variability of looming responses. The amount of variability
observed in neuronal responses can depend on the parameters
of the input it receives (Faivre and Juusola 2008). These factors
include how strongly the stimulus drives the neuron (Faivre
and Juusola 2008; Tolhurst et al. 1983) and stimulus dynamics
(Warzecha et al. 2000; but see Schaette et al. 2005). In the
LGMD/DCMD, variability has previously been analyzed
mainly in the dark-adapted state, to very different stimuli from
those used here (Barker 1993). We found that the peak SNR of
the membrane potential in response to looming stimuli is larger
than to single-facet stimuli. Since looming stimuli activate the
LGMD much more robustly than single-facet stimuli, it is not
entirely surprising that the SNRs of looming responses are
larger than those of single-facet responses. However, the peak
SNR for looming stimuli was unchanged when firing rates
were considered instead of Vm. This suggests that the spike
generation process within the LGMD introduces additional
noise, at least during looming stimuli. Variability in spike
threshold is a possible source of this additional noise (Azouz
and Gray 1999; Chacron et al. 2007). Consistent with this idea,
both the LGMD and our model exhibit spike frequency adap-
tation (SFA), which dynamically shifts the cell’s frequency-
current curve based on past spiking. Indeed, our model LGMD
responses reproduce this drop in SNR from Vm to firing rate,
and removing SFA from the model, by removing the calcium-
sensitive potassium current, yields SNR values for the IFR that
were higher than those for the Vm (data not shown).

Looming responses in the LGMD result from the summation
of thousands of inputs over the course of the stimulus. The
number of inputs activated over time, both excitatory and
inhibitory, grows due to both the expanding area of the stim-
ulus and increasing angular speed. Use of a compartmental
model of the LGMD allowed us to study how variability in the
individual inputs shapes the variability of the LGMD response.
These simulations show that, surprisingly, the variability in the
strength of individual facet inputs do not play a strong role in
determining the SNR of the LGMD peak firing rate or peak
membrane potential. Instead, the looming variability is largely
determined by the variability from spontaneous input arriving
onto the LGMD and temporal jitter of the excitatory inputs.

The model allowed us to examine the importance of LGMD
input timing variability in shaping the looming responses by
running the simulations with and without a luminance change
duration-dependent jitter. We observed in our single-facet
responses that the variability in response latency from trial to
trial increased with luminance change duration (Fig. 4). Thus
early on during an object’s approach (or a simulated approach),
the angular velocity of its edges is slow, and the object takes a
long time before its edge reaches a new photoreceptor’s recep-
tive field, since locust photoreceptor receptive fields are �3°
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wide with centers separated on average by 1–2° (mean 	 1.5°;
Krapp and Gabbiani 2004). The high amount of jitter in the
synaptic inputs to the LGMD originating from different facets
allows the LGMD’s firing rate to climb smoothly, rather than
evoke a series of bursts triggered by synchronous inputs when
the stimulus reaches new visual fields. Supporting this notion,
subtle bursting to stimulus changes can be observed in LGMD
responses to “constant-rate” looming stimuli, a variant of a
looming stimulus that stimulates each facet of the eye with a
roughly equal duration luminance change that should evoke
LGMD excitation with less temporal jitter than normal loom-
ing. If such bursting were to occur in vivo to looming stimuli,
escape behaviors would likely be grossly mistimed (see
below).

Relationship with behavior. It was recently shown that
trial-to-trial variability in the LGMD/DCMD spike trains affect
jump escape responses evoked by looming stimuli (Fotowat et
al. 2011). Specifically, the timing of the locust’s jump corre-
lates strongly with the time of DCMD peak firing rate such that
jumps occur �70 ms after the DCMD reaches its peak. Addi-
tionally, after the onset of the energy storage phase preceding
the jump, called co-contraction (Burrows 1996; Santer et al.
2005), both the DCMD spike count and the regularity of
DCMD spiking are predictive of the animal jumping. Thus the
stimulus speed dependence of temporal jitter contributes to the
production of DCMD firing patterns capable of driving down-
stream motor neurons important for jumping. Also, the timing
of the co-contraction is partially dependent on the DCMD
reaching a firing rate threshold. Very bursty LGMD spike
trains, like those of the model with constant jitter, are likely to
cross that threshold at very different times than in the normal
case, possibly evoking mistimed jumping if such spike trains
were produced in intact locusts. Behavioral experiments with
stimuli designed to induce such bursting DCMD firing could be
carried out to further test this idea. Although there is strong
evidence that the DCMD and its ipsilateral homolog play an
important role in the generation of jump collision avoidance
behavior to looming stimuli measured in the laboratory (Foto-
wat et al. 2011), other pathways will also likely contribute to
escape behaviors under more natural conditions, such as those
involving giant wind-sensitive neurons (e.g., chapt. 10 of
Burrows 1996).

In conclusion, we have shown that neuronal response vari-
ability through a visual pathway in the locust increases and that
the SNR along the pathway for single-facet signals decreases.
Summation of many of these inputs within the LGMD during
looming boosts the SNR slightly, but spike generation lowers
it again. Modeling suggests that variability in the magnitudes
of individual synaptic inputs contributes little to trial-to-trial
response variability. Instead, both ongoing spontaneous activ-
ity and variability in the latencies of synaptic input shape
LGMD responses. Spontaneous activity influences the SNR of
the LGMD output around its peak time, whereas timing vari-
ability enables a smoothly rising firing rate during looming and
helps determine the variability of the response peak, both
attributes of the response important for behavioral output.
Together, these results suggest that noise, especially temporal
response variability, contributes to shaping the neural re-
sponses elicited by looming stimuli along this sensory-motor
pathway.
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