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Neurons in a variety of species, both vertebrate and invertebrate, encode the kinematics of objects approaching on a collision course
through a time-varying firing rate profile that initially increases, then peaks, and eventually decays as collision becomes imminent. In this
temporal profile, the peak firing rate signals when the approaching object’s subtended size reaches an angular threshold, an event which
has been related to the timing of escape behaviors. In a locust neuron called the lobula giant motion detector (LGMD), the biophysical
basis of this angular threshold computation relies on a multiplicative combination of the object’s angular size and speed, achieved
through a logarithmic-exponential transform. To understand how this transform is implemented, we modeled the encoding of angular
velocity along the pathway leading to the LGMD based on the experimentally determined activation pattern of its presynaptic neurons.
These simulations show that the logarithmic transform of angular speed occurs between the synaptic conductances activated by the
approaching object onto the LGMD’s dendritic tree and its membrane potential at the spike initiation zone. Thus, we demonstrate an
example of how a single neuron’s dendritic tree implements a mathematical step in a neural computation important for natural behavior.

Introduction
Explaining how neural circuits implement specific computations
on sensory stimuli relevant for behavior presents a central chal-
lenge for neuroscience. The task requires an understanding of the
anatomy of neural circuits, their physiology, and their mapping
onto specific building blocks of the investigated computation.
Classic studies from this perspective include those related to the
jamming avoidance behavior of weakly electric fish, directional
motion selectivity in the vertebrate retina and visual cortex, as
well as directional selectivity in the insect visual system (Heiligen-
berg, 1991; Priebe and Ferster, 2008; Jones and Gabbiani, 2010;
Wei and Feller, 2011; Borst and Euler, 2011). Yet, we do not have
a detailed understanding of how specific signals are represented
in real time at successive stages of the neural networks involved in
these computations.

More recently, a neural pathway in the locust visual system has
been proposed as a model to study how a single neuron and its
presynaptic network may implement multiplicative computa-
tions (Hatsopoulos et al., 1995; Koch, 1998). Multiplication lies
at the heart of several algorithms implemented neurally, most
famously the Reichardt correlation model of directional motion
detection in insects (Hassenstein and Reichardt, 1956; Borst et al.,

2010). In the locust, an identified neuron called the lobula giant
movement detector (LGMD) lies at the apex of a converging
sensory pathway specialized in detecting objects approaching on
a collision course (O’Shea et al., 1974; Schlotterer, 1977; Rind and
Simmons, 1992). This pathway has been extensively studied us-
ing looming stimuli, two-dimensional expanding shadows pro-
jected onto a screen to simulate approaching objects (Fotowat et
al., 2011). These stimuli cause the firing rate of the LGMD to
initially increase, then peak, and finally decay toward baseline late
during the simulated approach. The peak firing rate always oc-
curs a fixed delay after the time at which the looming stimulus
reaches an angular threshold on the retina, independent of the
stimulus’ specific characteristics, such as the simulated object’s
size, speed, texture, or approach direction (Gabbiani et al., 1999;
2001). Neurons with nearly identical response profiles have been
identified in a variety of vertebrate and invertebrate species (Sun
and Frost, 1998; Wu et al., 2005; Preuss et al., 2006; Fotowat et al.,
2009; Nakagawa and Hongjian, 2010; Liu et al., 2011).

How does the LGMD neuron implement this angular thresh-
old computation? The LGMD receives �15,000 cholinergic ex-
citatory synapses whose activation is related to the speed of
moving objects (Strausfeld and Nässel, 1981; Rind and Simmons,
1998; Krapp and Gabbiani, 2005). In addition, it receives �1000
GABAergic inhibitory synapses, whose activation depends on
stimulus size (Rowell et al., 1977; Gabbiani et al., 2005). The
model that best explains the time course of the neuron’s firing
rate is essentially unique and multiplies the angular speed of the
looming stimulus with a negative exponential of its size (see Fig.
1; Gabbiani et al., 1999). This suggests that feedforward excita-
tion to the neuron encodes angular speed while feedforward in-
hibition mediates the size signal. Further data support the
hypothesis that this multiplication is achieved within the neuron
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through addition of the excitatory and inhibitory inputs trans-
formed logarithmically, followed by an approximate exponenti-
ation, taking place at the spike initiation zone (Gabbiani et al.,
2002). However, the quantitative relationship between the excit-
atory input to the LGMD and stimulus velocity has remained
unknown, as has the relationship between the inhibitory input
and angular size. Also missing is an understanding of how these
signals are processed presynaptic to the LGMD. As a result, the
specific computation carried out within the LGMD has remained
unclear.

Recently, we characterized the encoding of stimulus speed in
the retina and the neuropils presynaptic to the LGMD (Jones and
Gabbiani, 2010). Based on these data, we simulated the activation
of neural populations at successive stages of the pathway leading
to the LGMD. We used the results to drive a compartmental
model of the cell. Our simulations demonstrate that speed is
encoded expansively by the excitatory neurons converging onto
the LGMD and show the postulated logarithmic compression of
angular speed to be implemented within the dendrites of the
LGMD. The results provide predictions for future experiments
and, more generally, have implications for the implementation of
neural computations in other systems.

Materials and Methods
Electrophysiology. This report further analyzes data previously presented
in Jones and Gabbiani (2010). Detailed methods of the recordings
throughout the locust visual system can be found there. Briefly, as illus-
trated in Figure 1 A, sharp-electrode intracellular recordings were carried
out in adult locusts (Schistocerca americana) of either sex. Recordings
were made from individual photoreceptors (n � 27 cells), large mono-
polar cells (LMCs) in the lamina (n � 3), and from the LGMD in both
voltage-clamp and current-clamp modes (n � 12 and 22 facets in 6
animals, respectively).

Visual stimulation. Visual stimuli were generated using custom soft-
ware on a personal computer running a real-time operating system
(QNX 4, QNX Software Systems). Two apparatuses were used: a conven-
tional cathode ray tube (CRT) monitor (200 Hz; luminance range, 2–90
cd/m 2) and a custom-designed projector-microscope system. The
projector-microscope system enabled stimulation at single-ommatidium
(facet) resolution. This was achieved by projecting an image generated using
a digital light processing projector (LT140, NEC) through a custom-built
microscope mounted horizontally on a vibration-isolated optical table (illu-
minance range, 4–2530 lux) (Jones and Gabbiani, 2010). Both the CRT and
projector were calibrated to ensure linear, 6 bit resolution control over light
levels. The ambient light level for single-facet experiments was set by a ring-
light mounted around the objective of the microscope. This level was con-
stant at 490 lux, equivalent to dim daylight. Locusts stimulated using the
CRT monitor were adapted to a slightly different light level, determined by
the brightness of the monitor (280 lux). In photoreceptors, the mean resting
membrane potential (Vm) values recorded using single-facet and monitor
stimulation were very similar: �40.4 mV and �39.1 mV, respectively.

The CRT monitor was used to record the responses of photoreceptors
to dark edges translating across their receptive fields over a broad range of
speeds (see Fig. 2 A). The slope of their hyperpolarizing responses were fit
to a saturating function of Michaelis–Menten type as follows:

Sph��� � ��/�� � �� (1)

where � is the edge velocity, and � and � are fit parameters giving the
saturation slope and the speed at half maximum slope, respectively. Fits
to this equation as well as those to other functional forms listed below
were quantified by computing r 2 values according to the formula r 2 �
1 � SSres/SSdat, where SSres � � [slopei � Sph(�i)] 2 is the sum of squared
residuals for the slope fit, and SSdat � � (slopei � meanslope)

2 is the
squared deviation of the data from its mean, meanslope. In these equa-
tions, slopei denotes the i-th slope data point for edge velocity �i.

The CRT monitor was also used to record LGMD responses to loom-
ing stimuli, as previously described (Gabbiani et al., 1999). The looming
stimuli were expanding dark squares on a bright background, as schema-
tized in Figure 1 B. Let l denote the half-size of the simulated object, v its
simulated approach velocity, and let t be time measured relative to pro-
jected collision. By convention, v is negative for an approaching object, t
is �0 before collision (0 � projected collision time), and, consequently,
the time-varying distance from the observer is v � t (see Fig. 1 B). If �
denotes the angular size of the square on the retina, then from the shaded
right triangle in Figure 1 B, tan(�/2) � l/vt. Inverting this equation yields
�(t) � 2 � tan �1(l/vt). The angle, �(t), is thus fully described by the
half-size-to-speed ratio, l/�v�, with units of time. Assuming a constant
simulated object size, the lower the l/�v� value, the faster the object is
approaching and the more suddenly it expands. The maximum � value
subtended at the eye by a stimulus on the monitor was 82°. The angular
velocity, �(t) � ��(t)/2, of the expanding square’s edges is given by the
following equation:

��t� �
� l/v

t2 � �l/v�2. (2)

The projector-microscope system was used to record the responses of
single photoreceptors, LMCs, and the LGMD to a series of luminance
changes from bright to dark (Jones and Gabbiani, 2010). These lumi-
nance changes had the time course of a cumulative Gaussian. Because the
spatial receptive field of photoreceptors is approximately Gaussian-
shaped (Wilson, 1975), such a time course matches that of an edge
sweeping across the receptive field at constant speed. More specifically,
an edge traveling at a constant speed � (in degrees per second), and
sweeping through a Gaussian receptive field of width �x (in degrees), will
produce a local, time-dependent luminance change that has the func-
tional form of a cumulative Gaussian with a duration determined by its
SD �t � �x/� (in seconds). The luminance changes presented to individ-
ual facets were parameterized by the amount of time it took to pass from
maximum to minimum luminance (luminance change duration), which
equals 4 � �t. From photoreceptor recordings, we determined the rela-
tionship between the duration of luminance change and the slope of the
evoked hyperpolarizing response of photoreceptors (see Fig. 2 B). This
relationship was fitted by the following version of Equation 1, which
depended on luminance change duration:

Sph�LD� � ��x�� �LD

4
� �x� (3)

where LD is the luminance change duration of the stimulus and �x is as
defined above. Plotting the peak depolarization elicited by the same stimuli
at later stages of the pathway against these photoreceptor slopes yielded
functional relations fitted by Weibull functions of the form as follows:

F� x� � 	 � �1 � e�� x/
��
� (4)

where x is the photoreceptor response slope and 	 was constrained to 1,
since the peak responses were normalized (see Fig. 3A). The normaliza-
tion for each experiment was performed by subtracting the mean spon-
taneous response level, then dividing each trial’s response by the mean
peak response to instantaneous luminance changes. Because photorecep-
tor recordings and those at later stages of the pathway were not per-
formed simultaneously, they could not be directly compared. Thus, to
take into account the variability observed in the data, we fitted the
Weibull functions to Gaussian distributed surrogate data generated from
the observed means and SDs for each recording condition (10,000 points
per condition). To check that the functional description of Equation 4
did not miss any important aspect of the empirical relationship, we also
ran the LGMD model simulations described below using a functional
relationship between photoreceptor slope and normalized peak re-
sponses derived from a cubic spline fit to the mean data points. This
yielded very similar results.

By combining the single-facet stimulation data recorded along the
visual pathway with the photoreceptor responses to translating edges
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obtained with the CRT monitor, we were able to model the responses of
individual LGMD inputs to looming stimuli, as explained next.

Modeling of inputs to the LGMD generated by looming stimuli. All data
analysis and generation of model inputs was done using custom pro-
grams in Matlab (Mathworks). Simulations using a compartmental
model of the LGMD were performed in the NEURON simulation envi-
ronment (Hines and Carnevale, 1997). The compartmental model had
active conductances similar to those of Peron et al. (2009). The model
possesses realistic spike rate dynamics, with spike frequency adaptation
governed by spike-triggered Ca 2	 influx and a calcium-dependent po-
tassium channel, as is observed in vivo (Peron and Gabbiani, 2009a). We
computed the compartmental model’s Vm and instantaneous firing rate
(IFR) based on the excitatory and inhibitory synaptic conductances ac-
tivated during a looming stimulus.

Simulated looming stimuli were generated as described above. For all
simulations, visual space was discretized with a resolution of 0.1° and
spanned 82° in azimuth and elevation (maximal looming square extent),
centered in the middle of the eye at its equator, and 90° from the front of
the animal. The neural population of excitatory fibers presynaptic to the
LGMD was simulated as a set of 2674 inputs spanning this 82 
 82°
portion of the visual field. The simulated photoreceptors were distrib-
uted across visual space based on a complete reconstruction of the visual
sampling pattern of a locust eye (Krapp and Gabbiani, 2005). Because no
information is available on how photoreceptor receptive field sizes may
vary across the locust eye, they were assumed to have a uniform angular
size, defined by a 2D Gaussian with an SD of 3/4°. During a looming
stimulus, the angular speed of an edge sweeping across the receptive field
of a photoreceptor is continually increasing (Eq. 2; see Figs. 1C, 5B).
Hence, to bridge with the experimental data described above, we adopted
the procedure summarized in Figure 4 A and explained in detail below.
First, we fitted a cumulative Gaussian to the associated luminance change
integrated over the photoreceptor receptive field. The optimal value of its
SD, �t, yielded a corresponding “effective” edge speed over the photore-
ceptor receptive field from the relation �eff � �t/�x. This effective edge
speed enabled us in turn to read out from Figure 2 A the corresponding
rate (slope) of hyperpolarization a real photoreceptor would have expe-
rienced in response to the stimulus. From this slope value we could then
deduce, using Figure 3A, the associated peak response caused by such an
input at later stages of the pathway, which consisted of LMCs, the
LGMD’s input current (Im) and the LGMD Vm. The combined mapping
from edge speed to peak response is also illustrated in Figure 3B. This
method treats photoreceptor response slope as a reliable bridge between
two different stimulus conditions having different brightnesses, enabling
us to avoid the assumption that response strengths under the two condi-
tions are identical.

The second parameter used to simulate looming responses at each
subsequent stage of the pathway was the latency associated with the
luminance change duration that had stimulated its upstream photore-
ceptor (see Fig. 4 A). As illustrated in Figure 3C, our data show a linear
relationship between luminance change duration and the timing of the
peak response at each level of the excitatory pathway (Jones and Gabbi-
ani, 2010). To simulate neural responses to stimuli presented using the
CRT monitor, we adjusted for slight differences in timing caused by the
different brightness of the projector-microscope system with which we
measured these timings. For this purpose, we measured the response
latencies of photoreceptors using both stimulus displays (see Fig. 3C),
calculated the differences between them, and adjusted the timings
accordingly at each subsequent stage of the excitatory pathway (see
Fig. 3D).

To obtain the time course of the compound excitatory stimulus at each
stage of the model, we summed the inputs over the entire population at
that stage in 2 ms bins and smoothed the resulting histogram with a
Gaussian filter (SD, 8 ms; see Fig. 5C). This was performed based on
input timings and magnitudes for the LMCs, the Im in voltage clamp and
Vm in current clamp (see Figs. 1 A, 3, 5A). The excitatory synaptic input
to the compartmental model of the LGMD was based on the input timing
and magnitudes obtained at the stage of the LGMD Im. We created six
synapses for each facet input, as expected based on physiological data
(Peron et al., 2009). Their timing and magnitudes were given variability

around their base value corresponding with that observed in vivo (Jones
and Gabbiani, 2010). Each synapse was implemented as an � function
conductance change with a maximum conductance of 0.54 S [� � 0.3
ms; reversal potential (Erev) � 0 mV]. These parameters are consistent
with those used for nicotinic acetylcholine synapses in other locust mod-
eling studies (Bazhenov et al., 2001) and known receptor properties (van
den Beukel et al., 1998). Depending on the effective edge speed of the
stimulus, the magnitude of this conductance was scaled by the normal-
ized response shown in Figure 3B. The dendritic location of each synapse
was determined by the retinotopic location of its associated photorecep-
tor receptive field as shown in Figure 4 D. The resulting time course of the
total excitatory synaptic conductance, gexc (see Fig. 7A), was very simi-
lar to the normalized magnitude profile of the LGMD Im (see Fig. 5C),
except for a slightly shallower rise due to the introduced synaptic vari-
ability. To generate the inhibitory synaptic input to the LGMD, we trig-
gered a set of four �-conductance synapses at a constant delay of 70 ms
after the luminance change over a photoreceptor receptive field had
reached its midpoint ( gmax � 7.5 
 10 �3 S; � � 3 ms; Erev � �75 mV).
These synapses were located on a small section of the main dendritic
trunk where the inhibitory dendritic fields would connect in a complete
anatomical model (see Fig. 4 D). Each inhibitory synapse also had a con-
stant amount of variability in magnitude and timing constrained by the
experimental variability of the LGMD membrane potential (Jones and
Gabbiani, 2012). The resulting total inhibitory input, ginh, thus closely
reflected the angular area covered by the stimulus, with a constant delay
(see Fig. 7G).

The assumption that population responses are a summation of single-
facet responses is most likely a simplification. However, it has been
shown that signals from two adjacent facets are largely independent of
each other within the LGMD, regardless of their apparent motion delay
(speed) and direction (Jones and Gabbiani, 2010). Previous experiments
have shown spatially dependent inhibitory effects attributed to the cir-
cuitry presynaptic to the LGMD (O’Shea and Rowell, 1975), but their
impact during looming is probably weak (Gabbiani et al., 2002, 2005).
More complicated multifacet interactions may help shape signals reach-
ing the LGMD in vivo (Peron et al., 2009); however, because they have
not yet been identified, we have not incorporated them into the model.

Determining LGMD model parameters. The compartmental model of
the LGMD used was constrained using a wealth of data collected in recent
years. The model is based on the compartmental model used in Peron et
al. (2009), which is an anatomical simplification of the reconstruction-
based anatomy of the model in Peron et al. (2007). The passive parame-
ters (Ra � 60 � cm 2; Cm � 1.5 mF/cm 2) were determined in Peron et al.
(2007) and the value of Rm (10,350 � cm 2; Eleak � �70 mV) was set to
produce an input resistance of 9 M�, as observed in vivo with spontane-
ous activity blocked pharmacologically (Dewell and Gabbiani, unpub-
lished observations). After we added spontaneous synaptic activity to
produce spontaneous membrane variability as observed in vivo (Jones
and Gabbiani, 2012), the final input resistance of the model was 4.5 M�.
The kinetics and concentrations of the spike-generating active conduc-
tances (INa and IKDR) were adjusted to produce realistic spike waveforms
and to match LGMD spiking responses to current injection (Peron and
Gabbiani, 2009a). Conductance densities were constant in the area sur-
rounding the spike initiation zone (SIZ; see Fig. 4 D, KCa region; INa, 217
mS/cm 2; IKDR, 353 mS/cm 2) and were a quarter as dense in the axon. The
model’s voltage-gated Ca 2	 channels, KCa channels, and Ca 2	 clearance
mechanism controlled the model’s spike frequency adaptation (SFA) and
had densities and kinetics appropriate to recreate the SFA observed in
vivo (Gabbiani and Krapp, 2006; Peron and Gabbiani, 2009b). The excit-
atory synaptic input strength to the LGMD was constrained by simulat-
ing single-facet stimulation trials as a short burst of spikes in the LGMD’s
presynaptic inputs (Peron et al., 2009; Jones and Gabbiani, 2012), result-
ing in six synapses firing three times each at 200 Hz. The maximal excit-
atory synaptic conductance was adjusted so that the resulting compound
EPSP had a mean amplitude of �10 mV at the base of the dendritic tree,
replicating a typical single-facet stimulation experiment (Jones and Gab-
biani, 2010). The variability of the synaptic conductances (magnitude,
jitter) was also set to replicate the variability observed in single-facet
stimulation experiments. The strength of the inhibitory synaptic conduc-
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tance was determined as that which success-
fully produced appropriately timed peaked
responses to looming stimuli with firing rates
in the correct range. The pattern of inhibitory
input, as described above, was based on avail-
able data and no attempt was made to change
the time course of this input to produce realis-
tic response profiles.

Speed-tuning functions. To quantify how the
neural populations presynaptic to the LGMD
and the LGMD itself encode looming stimulus
velocity, we calculated the relationship be-
tween the dynamic velocity of the stimulus
edge and the evoked response. These angular
speed-tuning functions at each stage of the
pathway are plotted in Figure 5D. To compute
them, we needed to account for delays caused
by neural latencies as signals propagate along
the pathway. Therefore, each tuning function
plots the instantaneous population response
strength at time, t, versus the instantaneous
stimulus angular speed, �, at time t � �. The
latency parameter, �, was computed at each
stage of the pathway individually. For each
level, � was calculated as the temporal offset
that maximized the correlation between
stimulus angular velocity and response. The
optimal delay was computed for each l/�v�
separately, then averaged across l/�v� to yield
one value for each stage along the pathway.
Resulting temporal offsets were as follows: �IFR �
93 ms, �Vm � 86 ms, �Im � 68 ms, and �LMC �
39 ms; offsets for individual l/�v� values varied
by �2–5 ms around those means. Function-
ally, these offsets are several milliseconds lon-
ger than the minimum latencies introduced to
single-facet signals in the model, as expected.
This procedure enabled the speed-tuning func-
tions to accurately capture how the velocity de-
pendence of single-facet latencies (see Fig. 3D)
shapes the velocity dependence of population
responses.

To obtain a compact description of the
shape of the resulting curves, we fit power-law functions to the speed-
tuning curves of the form R(�) � a(�/�max)n. They were fit in the range
between 2°/s and the velocity, �max, at which the stimulus reached the
angular threshold size detected by the model LGMD’s peak firing rate.
Fitted parameter values are given in Figure 5. To ensure that the shape of
the speed-tuning functions was not dependent on the exact value of the
latency parameter � used, we also fit several values between 0 ms and
those stated above. For all � values tried, speed-tuning functions were
always well fit by power-law functions and the fitted n was always 1. For
smaller values of �, however, the fitted values of a and n decreased and the
slopes of the curves for different l/�v� values diverged: larger l/�v� values,
corresponding to slower approaches, had relatively steeper slopes. Thus,
the value of � influenced the steepness of the tuning curves but not their
general shapes.

The Weibull functions fit to speed-tuning functions of Vm and the IFR
in Figure 6 were of the same form as in Equation 2 above.

Spike threshold transformation. The nonlinear transformation occur-
ring in spiking neurons in vivo between membrane potential and firing
rate is important from the computational standpoint (Gabbiani et al.,
2002; Peña and Konishi, 2002; Priebe et al., 2004). At the spike initiation
zone of the LGMD, this transformation is known to be a power law
approximating an exponential (Gabbiani et al., 2002). To characterize
the equivalent transformation in the model, we computed the relation-
ship between the model median-filtered Vm and the IFR in the following
fashion, following the method used previously on experimental data

(Gabbiani et al., 2002). Median-filtered Vm and IFR time series from all
simulation runs were averaged in 5 ms bins spaced every 2.5 ms. A reg-
ularly spaced Vm vector was created by pooling these values across time
and binning them (0.5 mV bins). The IFR values associated to each Vm

bin were used to compute mean IFRs and their SDs. Threshold functions
were fit using the method of least squares, minimizing the error function,
as follows:

�2 � �
i

(fiti � IFRi)
2

IFR SDi
2 (5)

where IFRi is the mean IFR in the i-th Vm bin and IFR SDi its SD, while fiti

is the corresponding fitted value as a function of Vm in the i-th bin. The
fitted function was IFR(Vm) � � � (Vm/Vmax)n, where Vmax (21.25 mV) is
the maximal value of the membrane potential that was considered. The
best power-law fit was for � � 125 and n � 1.57 (r 2 � 0.95; see Fig. 7H ).
Code for reproducing the model and figures using model data is depos-
ited on ModelDB (http://senselab.med.yale.edu/modeldb).

Results
Our goal was to understand how the neural populations presyn-
aptic to the LGMD nonlinearly signal stimulus speed and how the
LGMD integrates these inputs with size-dependent inputs to
track looming stimuli over time. Specifically, the time course of

Figure 1. Circuitry and physiology underlying a multiplicative neural computation in the locust optic lobe. A, Photoreceptors
(Ph) hyperpolarize (right, cyan trace) as dark edges cross their receptive fields over single facets on the eye (top, yellow circles).
Subsequently, that information propagates along an excitatory pathway comprising LMCs and medullary interneurons (Med),
terminating onto the LGMD’s large excitatory dendritic field (green rake). Recordings from photoreceptors, LMCs, and the LGMD in
both Im and Vm to single-facet stimuli (right, cyan traces) enable analysis of how edge speed is coded along the pathway. Five facets
on the eye (top, dashed square) mapped onto five distinct locations within the excitatory dendritic field (matching square and
hues) symbolize its retinotopic organization. In addition, the LGMD receives inhibition related to stimulus size onto distinct
dendrites. Its firing rate (black), f(t), in response to looming stimuli (see B) is modeled as a product of speed, � (excitatory, green),
and a negative exponential of size, � (inhibitory, red). B, Looming stimuli simulate the approach of an object on a collision course
with the animal. For a dark square, they are characterized by the angular size, �(t), which depends on the ratio l/�v�, where l is the
square half-size and v its approach velocity. The shaded right triangle is used to derive the time dependence of � (see Materials and
Methods). C, The angle, �, subtended by the looming stimulus on the retina expands increasingly fast as collision becomes
imminent (top), causing the LGMD IFR to increase, peak, and eventually decay (middle, cyan). As explained above, the IFR can be
modeled by f(t) (black trace). The time of peak firing rate (star) depends linearly on l/�v� (bottom). The linear fit to the peak time
(dashed line) has a slope, �, and an intercept with the ordinate axis, �, which enter as parameters in f(t). Additionally, the linear
relation between peak time and l/�v� is synonymous with the firing rate peak occurring a fixed delay, �, after the square reaches a
threshold angle, �thres � 2tan �1 (1/�), over the animal’s retina. C adapted from Gabbiani et al. (2002).
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the LGMD firing rate has been described as follows by a product
of angular speed, �(t), and a negative exponential of size, �(t),

f�t� � g���t � ��e��� �t���� (6)

resulting in the detection of an angular threshold in the LGMD’s
peak firing rate (Fig. 1). In this equation, g is a static (time-
independent) nonlinearity, the parameter � is related to the
threshold angle detected by the peak firing rate and � represents a
neuronal delay (Gabbiani et al., 1999). A key aspect of this neural
computation is how angular speed is encoded within the LGMD’s
excitatory input pathway. The approach we took to address this
question was to characterize the coding of angular speed along
the pathway using single-facet stimuli.

Single-facet speed tuning
The activation of the excitatory inputs to the LGMD by looming
stimuli is highly synchronized and changing over time (Jones and
Gabbiani, 2010). To obtain a precise quantitative description, we
started by systematically documenting the response of single
photoreceptors as a function of edge speed. The inset of Figure
2A shows the membrane potential of a photoreceptor, recorded
intracellularly, to translating bright-to-dark edges presented us-
ing a CRT monitor. As the edges traverse the cell’s receptive field,
the light level experienced by the receptor decreases and the
membrane potential of the cell drops, normally �10 –15 mV
(Jones and Gabbiani, 2010). We recorded photoreceptor re-
sponses to translating edges and computed their slope (Fig. 2A).

Because LMCs in the lamina, the next stage of the visual pathway,
high-pass filter their inputs (Laughlin and Hardie, 1978; Juusola
et al., 1995), the slope of photoreceptor hyperpolarization will
have a major influence on downstream LMC responses. The re-
lationship between edge speed and response slope was well fit by
a simple saturating function (Eq. 1). To examine signals down-
stream of photoreceptors, we used light stimuli precisely deliv-
ered to single facets and having the time course of cumulative
Gaussians. These stimuli were designed to mimic the light
changes produced by edges moving through the Gaussian-
shaped receptive fields of photoreceptors. Photoreceptor mem-
brane potential responses to these stimuli are shown in the inset
of Figure 2B. We used stimulus luminance changes spanning a
wide range of rates (parameterized by the duration of the lumi-
nance change) to mimic a range of edge speeds occurring during
looming stimuli, and show in Figure 2B the relationship between
luminance change duration and photoreceptor response slope
for the population of recorded photoreceptors (n � 17).

Next, we obtained intracellular recordings further along the
LGMD visual pathway, including both current-clamp and

Figure 3. Single-facet speed tuning and response timing. A, The relationship between pho-
toreceptor response slope and normalized response peak height is plotted for LMCs (red), the
LGMD Im (cyan), and the LGMD Vm (black). Each point is the population average response for one
luminance change duration (error bars give SEM). Dashed lines show Weibull function fits to the
data (Eq. 4). The inset (gray shading) better shows the lower response portion of the data and
fits. Typical normalization values: LMCs, 4.84 mV; LGMD Im, �1.75 nA; LGMD Vm, 6.6 mV. Fit
parameters: LMC 
� 221.7 mV/ms, �� 1.11; LGMD Vm 
� 172.7 mV/ms, �� 1.25; LGMD
Im 
 � 193.7 mV/ms, � �1.61. Fit r 2: LMCs 0.91; LGMD Vm 0.92; LGMD Im 0.94. B, Using the
fits shown in A and the relationship between stimulus speed and photoreceptor slope shown in
Figure 2 A, we calculate the single-facet speed tuning for photoreceptors, LMCs, and the LGMD
Im and Vm. Coloring is as in A, and the inset shows the predicted responses to speeds up to
100°/s. C, Adjusting response timings for display type. Response latencies of photoreceptors for
wide-field luminance changes on the monitor (black) and single-facet luminance changes de-
livered with the projector-microscope (solid gray) are shown. Lines shown are the best fit linear
functions, dashed and solid for the two conditions. D, Conversions of response peak times
through the visual pathway. Dashed lines show the linear fits to the timings of the peak re-
sponses for LMCs and the LGMD based on stimuli presented using the projector-microscope.
Solid lines show the predicted peak times for stimuli presented using a monitor, the condition to
be simulated. Adjustments shift latencies by 5 ms with an �4% change in slope of the rela-
tionship. Resulting parameters were slope � 0.38, 0.50, and 0.47; and intercept � 32.4, 60.1,
and 78.4 ms for LMC, LGMD Im, and LGMD Vm respectively. Colors show recording type as in A.

Figure 2. Photoreceptor responses to moving edges and luminance changes. A, Population
average photoreceptor response slopes as a function of edge speed. The dashed line is a least-
squares fit to the data of a saturating function (Eq. 1; parameters: � � �641 mV/s, � �
543°/s, r 2 � 0.992). Barely visible error bars show SEM. Inset shows representative photore-
ceptor responses (bottom traces) to dark translating edges (edge position on top; maximal
displacement, 102°). Fast translations are in bright colors, with slower stimuli in darker colors
(20, 80, 319, and 1275°/s, respectively). B, Mean photoreceptor response slope to luminance
changes as a function of luminance change duration. Dashed line shows best fit relationship (Eq.
3; � � �575 mV/s, � � 73°/s, r 2 � 0.992). Inset shows representative photoreceptor
responses to luminance changes of varying duration. Bright colors show faster luminance
changes; darker colors are slower (0, 83, 183, 350 ms). Top inset traces show the stimulus
luminance over time. Differences in response transients between A and B are due to differences
in ambient lighting and stimulus brightness but do not affect the range of photoreceptor re-
sponse slopes (see Materials and Methods; Jones and Gabbiani, 2010).
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voltage-clamp recordings from the
LGMD itself, and current-clamp record-
ings from large monopolar cells. Because
all responses to single-facet luminance
changes were acquired under identical
conditions, they enabled us to directly
compare response strengths at different
stages of the pathway to those of photore-
ceptors. These relationships are shown in
Figure 3A and were well fit by Weibull
functions (Eq. 4). From these empirical
relationships and that shown in Figure
2B, we could extrapolate the single-facet
speed tuning by transforming from stim-
ulus speed to photoreceptor slope and
from photoreceptor slope to response
strength for each recorded stage of the
pathway. The resulting speed-tuning
functions are shown in Figure 3B.

We were also able to carry out a similar
extrapolation for another important pa-
rameter of single-facet responses: their
latencies. Previously, we showed that re-
sponse latency increases linearly with lu-
minance change duration (Jones and
Gabbiani, 2010). Because we wish to simu-
late the responses of looming stimuli pre-
sented using a CRT monitor, here we must
make a small adjustment in those measured
relationships to account for different stimu-
lus sources. Thus, photoreceptor response
onset latencies to luminance changes were
measured both with the single-facet
projector-microscope (which we used for
stimulation of all other cell types) and with
the CRT monitor (on which we presented
looming stimuli to the LGMD). These two
modes of stimulation evoked responses of
slightly different latencies (Fig. 3C), and we
used that slight difference to adjust the re-
sponse latencies of other cell types to stimuli
presented with the CRT monitor (Fig. 3D).

Simulation of wide-field looming
responses
The results described above can be used to
simulate the activation of single photore-
ceptors by the edge of a looming stimulus
crossing their receptive field, as well as the

Figure 4. Model structure. Each LGMD compartmental model input was driven by a luminance change within the receptive field
(RF) of its associated photoreceptor during a looming stimulus. The 2D Gaussian photoreceptor RFs were distributed across visual
space based on a complete reconstruction of the optical sampling by a locust eye and had a uniform size (SD, �x � 3/4°). A,
Schematic diagram illustrating how the strength of an individual synaptic input associated with a single photoreceptor was
determined in the model. The luminance change caused by the looming stimulus edge crossing the photoreceptor’s RF was fitted
to a cumulative Gaussian. This yielded an equivalent edge speed that determined the peak synaptic conductance activation (top;
see Fig. 3B). The duration of the luminance change is used to determine the latency of response through the relationships shown
in Figure 3D (bottom). B, Sampling density across the visual field, obtained by summing the weights of individual RFs at each
location. Hot colors indicate more densely sampled regions of visual space. The maximum weight, for display purposes, of each RF
is 1, so the RF density gives the number of RFs sampling that area, if the RFs were perfectly overlapping. Receptive fields outside the
maximum angular extent of the stimulus were omitted from the plot and the model. C, The luminance input as a function of time
to collision for simulated photoreceptors during the presentation of a looming stimulus. Each simulated photoreceptor integrated
the stimulus luminance within its RF. During a looming stimulus, the luminance within the RF dropped. The top trace shows the
angular size of the looming stimulus, while bottom traces show resulting luminance changes at individual RFs. The large number
of RFs experiencing luminance changes shortly before collision causes the solid black in the �400 ms before collision. The inset
expands the final 400 ms before projected collision. D, Schematic of the active compartmental model of the LGMD used. Excitatory
input impinges retinotopically onto the rake-shaped dendritic tree and inhibitory synapses are made onto the dendritic segment
immediately proximal to the rake. The model is modified from the one used in Peron et al. (2009). Compartments from which the
dendritic and SIZ Vm were recorded are highlighted in orange. E, Spiking responses of LGMD model to looming stimuli. Top traces

4

show the stimulus angular size for l/�v� � 10, 40, and 80 ms.
The rasters show spiking in 50 simulated presentations for
each l/�v� value, and bottom traces show the mean instanta-
neous firing rates of the model computed by convolution of
individual spike trains with a Gaussian filter (SD, 20 ms). Enve-
lopes show SEM. F, The timing of the model LGMD peak firing
rate (circles, error bars show SEM) depends linearly on l/�v�,
with a best fit slope � � 4.8 and an intercept � � 14.7 ms
(black dashed line; see Eq. 6). This corresponds with the peak
response occurring 14.7 ms after the stimulus has reached a
constant angular size of 23.7°. The gray line shows the best fit
linear relationship found in Jones and Gabbiani (2010).
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resulting synaptic activation of the LGMD neuron and other
neurons downstream of photoreceptors (Fig. 4A). Specifically,
the integrated photoreceptor luminance change determines an
equivalent edge speed and luminance change duration that yield
corresponding peak synaptic strengths and activation timings, re-
spectively. To simulate looming responses across an array of
photoreceptors, we used a reconstructed map of their visual sam-
pling directions across an entire locust eye (Krapp and Gabbiani,
2005). In this map, the sampling density varies widely across visual
space, with a relatively dense stripe along the visual equator. The
equatorial density peaks in front of the animal, outside of the region
where our looming stimuli were simulated. Each photoreceptor re-
ceptive field was modeled by a symmetric 2D Gaussian with a full
width of 3° (Wilson, 1975). The resulting spatial weighting of visual
information is illustrated in Figure 4B by means of a “summed”
receptive field strength.

We calculated the compound activation dynamics generated
by a looming square in the population of neurons presynaptic to
the LGMD from the description of the light changes taking place
at each facet (Fig. 4A). The resulting signals are shown in Figure
4C. Because the square expands slowly at first, the photoreceptor
light level initially decreases relatively slowly as it takes a long time
for the stimulus to cover a receptive field. As the stimulus speeds
up, light changes occur faster and include more facets. This re-
sults both from the stimulus edges moving more quickly and
from the increasingly larger edges encountering more photore-
ceptor receptive fields. As described below, we used this pattern
of light changes to examine the timing and strength of population
activity at each stage of the LGMD pathway based on the single

facet responses recorded from each cell
type. We also used these population re-
sponses as the basis for synaptic input
onto a compartmental model of the
LGMD, illustrated in Figure 4D. Based on
these inputs, the compartmental model
produces sustained firing to looming
stimuli, which ramps up until coming to a
peak some time before collision (Fig. 4E).
Like in vivo, these peak times are linearly
related to the approach parameter charac-
terizing the looming stimulus, defined as
the half-size-to-speed ratio of the simu-
lated approaching object, l/�v� (Fig. 1B;
see Materials and Methods for more de-
tails on the looming stimuli). These peak
times also become more variable with
larger l/�v� values, again replicating in vivo
results (Fig. 4F). Thus, the model was able
to reproduce, within its error bounds, the
main features of experimental LGMD re-
sponses to looming stimuli, although not
all experimental features were fully ac-
counted for. The membrane potential and
spike train variability in response to loom-
ing stimuli were, for instance, typically
higher in the experimental data than in
the model (Jones and Gabbiani, 2012).

Excitatory input responses to
looming stimuli
Looming stimuli are dynamic and vary
greatly in angular size and speed during a
simulated approach. Since the timing of

LGMD activation to looming stimuli is a critical feature of its
response, we examined the predicted activation time course of its
inputs. Figure 5A shows the relative magnitudes and peak re-
sponse times at successive stages of the pathway leading to the
LGMD. Each point in this plot corresponds to a response gener-
ated from the light change occurring at a single facet. The
summed strength of these inputs over time is plotted in Figure
5C, while the time course of the looming stimulus angular veloc-
ity is shown in Figure 5B. Because latency increases with each
stage, the activity climbs progressively later during the approach.
The dashed lines on 5B and 5C mark the times and velocities at
which the looming object’s angular threshold is reached, only a
few milliseconds before the simulated LGMD response would
peak to such a stimulus (23.7°; Fig. 4F). Thus, the population
responses preceding and up to those lines are most important for
the LGMD’s angular threshold computation. It is notable how
small a proportion of the excitation occurs before this time. It
should also be noted that the increase in the number of facets
activated over time, combined with the increase in the magnitude
of single-facet responses, causes the overall amount of excitation
in the summed population to climb more steeply than the re-
sponse strength from individual facets (Fig. 5A,C).

From these data we can compute speed-tuning curves along
the pathway by plotting the instantaneous relationship between
population activation at each stage and the angular velocity that
evoked it. What is noticeable immediately is that these functions
are expansive: response magnitude increases nonlinearly with
stimulus velocity during the approach. In fact, they are well fit by
power-law functions, with exponents ranging from �2 to 3 (Fig.

A D

E

B

C

Figure 5. Dynamic population speed tuning to looming stimuli. A, Strength of individual inputs over the course of a looming
stimulus (l/�v� � 40 ms) at each stage in the pathway. Each point is the normalized strength of an individual input, plotted at its
time of activation (Fig. 4A). The color denotes the stage for which the timing and magnitude information was computed. B, The
angular velocity of the looming stimulus over time. Dashed lines show the average time and velocity at which the LGMD model
responses reach their firing rate peak. C, The time-binned, summed, population input strength for each model stage (LMC, LGMD
Im, and LGMD Vm). The sum is taken over single-facet normalized inputs and smoothed as explained in Materials and Methods.
Inset shows the sections of the plots leading up to the angular threshold time and velocity (light gray). D, The strength of the
excitatory input population is plotted against instantaneous angular velocity for different values of the looming stimulus param-
eter, l/�v�. Thin vertical lines show the stimulus velocities corresponding to angular threshold size for each stimulus. This velocity is
different for different values of l/�v�. The plots show the tuning at successive stages of the pathway (LMC, LGMD Im, and LGMD Vm).
Lighter colored dashed lines show power-law fits to relationships (LMC: � � 22.46, 1.48, 0.38; n � 2.10, 2.17, 2.30; r 2 � 0.999,
0.997, 0.980 for l/�v�� 10, 40, 80 ms. LGMD Im: �� 25.23, 1.58, 0.36; n � 2.16, 2.44, 2.54; r 2 � 0.999, 0.998, 0.981; LGMD Vm:
�� 24.92, 1.07, 0.19; n � 2.28, 2.67, 2.79; r 2 � 0.999, 0.998, 0.983; �max � 238.34, 59.58, 29.79°/s). E, LGMD Im speed-tuning
curves for velocities �100°/s (detailed view of gray shaded area in D).
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5D,E, dashed lines). The overall steepness of these functions var-
ies only slightly with either stimulus value or processing stage.
Slower approaches (higher l/�v� values) tend to have slightly
steeper tuning functions than faster approaches, and the tuning
function derived for the LGMD membrane potential is slightly
shallower than those for the LMC stage and LGMD membrane
current. The steepness also depends on the exact temporal offset
used in the analysis to compensate for latency (see Materials and
Methods for details), but the curves always retain their power-law
shape, well described with exponents 1.

Modeling of LGMD responses
We next used the modeled input timings and strengths to drive
the synaptic input to a compartmental model of the LGMD (Fig.
4D). This enabled us to determine how the angular speed tuning
of LGMD inputs is altered by integration within the neuron and
its relation to LGMD responses observed in vivo. Our compart-
mental model has an extended, but simplified, rake-like dendritic
tree, where it receives excitatory synaptic inputs. It also possesses
active conductances implementing realistic spike-rate adapta-
tion. The inputs synapse retinotopically onto the dendritic tree,
with frontal regions of the visual field activating distal synapses,
and posterior regions activating proximal ones, while elevation is
mapped across the width of the tree. In addition to the time-
varying excitatory input described above, we also included inhib-
itory inputs stimulated with a fixed magnitude and delay after the
stimulus reached each new facet (see Materials and Methods).
Thus, synaptic inhibition was proportional to the area of the
looming square, consistent with previous descriptions of feedfor-
ward inhibition onto the LGMD (Hatsopoulos et al., 1995; Gab-
biani et al., 2005). Finally, synaptic noise in the model was
adjusted to fit the variability of experimental data to single facet
stimulation (Jones and Gabbiani, 2012).

We initially verified that the model displayed looming re-
sponses similar to those observed in vivo (Fig. 4E,F). Next, we
ran simulations using only the excitatory inputs elicited by loom-
ing stimuli to compare the model’s output with our calculated
population inputs. The resulting angular speed tuning functions
are shown in Figure 6. Both the Vm, taken from a compartment
adjacent to the SIZ, and the IFR were normalized to their maxi-
mum across all l/�v� values (41.7 mV and 199 Hz, respectively). In
both cases, the model output starts to saturate before the angular
speed at which the LGMD response would normally peak. All
tuning curves are well fit by Weibull functions, shown as dashed
lines (Eq. 4). For comparison, the fits to the speed tuning of the
Vm summed input stage, taken from Figure 5D, are plotted as
dotted lines in Figure 6A. Clearly, the angular velocity tuning at
the output of the compartmental model has a very different shape
than the summed membrane potential depolarization elicited by
individual inputs to the LGMD.

Biophysics of multiplicative computation within the LGMD
The observed difference in velocity tuning of the compartmental
model’s responses and the excitatory input suggests that the ex-
citatory input is substantially transformed within the LGMD
neuron. This raises two questions about the underlying transfor-
mation: (1) where is the transformation localized in the neuron?
and (2) is the transformation of velocity tuning related to the
previously proposed scheme for the computation performed by
the LGMD?

As to the first question, the transformation of velocity tuning
could occur, in principle, within the excitatory dendrites of the
model or between the excitatory dendrites and the spike initia-

tion zone, given the extended electrotonic structure of the neuron
and the location of the feedforward inhibitory input. Alterna-
tively, the transformation could be due to the active conduc-
tances mediating spiking and spike frequency adaptation at the
spike initiation zone. The latter possibility can be discarded since
the shape of the model Vm and IFR in Figure 6 are qualitatively
similar, and since pharmacological block of spike frequency ad-
aptation has a minimal effect on the LGMD’s responses to loom-
ing stimuli (Peron and Gabbiani, 2009a).

As to the second question, the previously proposed scheme for
the computation performed by the LGMD is based on excitation
being logarithmically related to angular velocity and added to
inhibition signaling angular size, followed by an approximate
exponentiation at the spike initiation zone (Gabbiani et al.,
2002). Together, these steps functionally result in a multiplica-
tion of the excitatory and inhibitory inputs to the LGMD, as
summarized by the following variant of Equation 6:

f�t� � g�exp[log ��t � �� � �� �t � ���]. (7)

Our data and simulations enabled us to address this question
within the biophysical model of the LGMD by examining how
signals at different levels of the model and in different compart-
ments of the neuron are interrelated and how they are related to
the angular speed and size of the looming stimulus.

As a first step in evaluating the signal transformations in the
context of the proposed computation (Eq. 7), we quantified the
relationship between angular velocity and the total excitatory
synaptic conductance to the LGMD model. Figure 7A shows the
time course of these two signals, both nonlinearly increasing dur-
ing the approach, and Figure 7B shows the relationship between
the two. The excitatory synaptic conductance is not linearly re-
lated to stimulus velocity, but well fitted by a power-law relation-
ship with a different slope for each l/�v� value. This mirrors the

A

B

Figure 6. LGMD model output speed tuning. A, Speed-tuning functions calculated from the
normalized Vm of the compartmental model, obtained from a compartment near the model SIZ.
Solid lines are the compartmental model speed-tuning curves. Lighter dashed lines are Weibull
function fits, and dotted lines are fits from the normalized input population speed-tuning
curves (see Fig. 5D), for comparison. Input population curves are normalized to their value at the
angular threshold velocity (marked by vertical lines). Vm is normalized to the maximum re-
sponse across l/�v� values (41.7 mV). Parameters for the fitted functions were 	 � 0.78, 0.87,
1.01 mV, 
� 45.37, 32.67, 29.93 (°/s); and �� 0.89, 1.24, 1.38, r 2 � 0.990, 0.996, 0.994 for
l/�v� � 10, 40, 80 ms, respectively. B, Speed tuning of the model IFR, formatted as in A,
normalized to 199 Hz. Parameters of the fitted Weibull functions were 	 � 0.94, 0.78, 0.63,

 � 26.88, 20.55, 15.97 (°/s), and � � 1.86, 2.76, 3.25, r 2 � 0.995, 0.999, 0.997.
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dependence of the LGMD Im on angular velocity documented in
Figure 5D. The resulting change in Vm, however, shows a much
more gradual rise over time. Figure 7C shows both the dendritic
and SIZ Vm during looming, and replots the normalized excit-
atory synaptic conductance for comparison. Because the den-
dritic and SIZ Vm traces look very similar to one another, we
conclude that the velocity tuning transformation occurs locally
within the dendrites of the model, and that the SIZ Vm is a close
reflection of the local dendritic Vm. In Figure 7D, the excitatory
conductance and resulting Vm at the SIZ are plotted against each
other, showing that the transformation between the two signals
can be described as a logarithmic compression. The light dashed
lines show logarithmic fits to the curves and the inset shows that
the relationship is correspondingly approximately linear when
displayed on a logarithmic abscissa. The cause of the compression
can be traced back to the reduction in driving force of synaptic
currents as an increasing number of synapses are activated by the
looming stimulus. This was verified by ascertaining that the local
dendritic Vm approached the excitatory synaptic reversal poten-
tial of the model (0 mV), and by carrying out simulations in
which the reversal potential was increased, resulting in a predict-
able increase of the speed at which the Vm saturated.

We found that, in contrast to the striking compression of the
total excitatory conductance’s output, the total inhibitory con-
ductance in the model was more subtly transformed. Since the
reversal potential of the inhibitory inputs were only 10 mV below
the resting potential, we decided that the best way to measure the
effect of inhibition on the model output would be to consider the
difference in Vm of simulations run with and without inhibition.
We call this Vm inhibitory influence and show its time course,
along with stimulus angular size, in Figure 7E. This time course is
consistent with that of feedforward inhibition observed experi-
mentally at the level of the LGMD’s firing rate (Gabbiani et al.,
2005). The relationship between the two signals is shown in Fig-
ure 7F, and can be seen to be sigmoidal and well fit by a Weibull
function. A similar plot produced for the total inhibitory input
conductance shows an approximately quadratic relationship to
the angular size (Fig. 7G), as expected from the sum of synaptic
inputs generated when the looming stimulus encounters new
facets. There is thus some compression of this inhibitory signal, as
can be seen when comparing G and F in Figure 7, but certainly not
nearly as strong as for excitation.

The observation that the excitatory synaptic conductance acti-
vated by a looming stimulus is compressed nearly logarithmically in

Figure 7. Transformation of angular speed and size inputs within the LGMD model. A, The time course of angular velocity (solid lines) and total excitatory synaptic input ( gexc, dashed lines) for
3 l/�v� values (10, 40, 80 ms). The blue angular velocity trace is shown before and after applying a time shift, toffset, to maximize its correlation with gexc, whereas the others are shown only after
temporal shifting. Time courses were normalized by their maximum value for each l/�v� value. Line colors in all panels denote l/�v� values, as in previous figures. B, The relationship between angular
velocity and total excitatory synaptic conductance. The quantity gexc(t) was plotted against �(t 	 toffset) where toffset (56 ms) was chosen to be the mean value of temporal offsets for which there
was the highest correlation with gexc(t) for each l/�v�. Solid bright lines show this relationship for each l/�v� value. Lighter dashed lines show power-law fits to this relationship. Fitted parameters are
n � 1.48, 1.70, 2.13; � � 7.31, 8.56, 4.51 mS/cm 2; with �max � 1000, 641, 321°/s, r 2 � 0.999, 0.999, 0.998 for l/�v� values of 10, 40 and 80 ms, respectively. C, Membrane potential over time
in multiple locations. Lighter traces show the membrane potential over time in a dendritic compartment corresponding to the center of the visual field (highlighted in Fig. 4D), while the brighter solid
traces are the Vm near the SIZ. For comparison, the time course of gexc, shown in A, is replotted. D, The relationship between gexc(t) and the resulting membrane potential near the SIZ. Colors show
responses to different looming stimuli as in A. Solid lines show the observed relationship while dashed, lighter lines show fitted functions of the form Vm�A log(B gexc). The inset shows the data on
a logarithmic x-axis, demonstrating that the relationship is approximately linear. Fitted parameters are A�3.38, 4.10, 4.19 mV and B�1.02, 1.54 and 2.97
10 �3 (mS/cm 2) �1, r 2 �0.84, 0.75,
0.75 for l/�v� values of 10, 40, and 80 ms, respectively. E, Time course of the effect of inhibition is shown, plotted with the angular size of the stimulus. Signals are all normalized to their maximum
across l/�v� values. The angular size trace is shifted by the same temporal offset as in A and B. F, The effect of inhibition on model Vm as a function of angular size. Solid lines show the model responses
and lighter dashed lines are Weibull function fits (Eq. 4; 	 � 19.2, 35.4, 37.5 mV; 
 � 39.6, 41.6, 47.0°; � � 1.04, 1.61, 1.71, r 2 � 0.990, 0.995, 0.994). G, The relationship between angular size
and the total inhibitory synaptic conductance. Lighter dashed lines show power-law fits (n�1.94, 2.39, 2.60 and ��0.12, 0.08, 0.05 mS/cm 2 with �max �82°, r 2 �0.992, 0.999, 0.997). H, Spike
threshold function for the model. The solid black line depicts the averaged relationship between median filtered SIZ Vm and IFR, while the dotted lines are one SD away from it. The red dashed line
shows the best fitting power-law function (� � 125 Hz, Vmax � 21.25 mV and n � 1.52; r 2 � 0.95).
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the membrane potential of the model, while the inhibitory influence
remains much closer to signaling angular size, fits the previously
proposed model that excitatory and inhibitory inputs are effectively
multiplied by an addition in logarithmic coordinates and subse-
quent approximate exponentiation via a nonlinear transformation
at the spike initiation zone of the LGMD (Eq. 7; Gabbiani et al.,
2002). Thus, we plotted the transformation between membrane po-
tential at the SIZ and instantaneous firing rate to determine its com-
putational role in the model (Fig. 7H). Fitting a power law to this
transformation yielded an exponent, n � 1.57, below the n � 3 value
observed experimentally (Gabbiani et al., 2002). A more expansive
spike transform in the model, closer to that observed experimentally,
would change the relative shapes of the speed-tuning functions for
the model Vm and IFR, shown in Figure 6, but none of the other
results. Additionally, because we used the peak LGMD membrane
potential deflections to single-facet stimulation—not the firing
rates—to constrain the strength of excitatory inputs, this relation-
ship would have minimally affected other important model param-
eters. Thus, this difference with experimental data is unlikely to affect
any of our main conclusions.

Overall, based on extrapolation from single-facet responses,
our modeling suggests a plausible biophysical implementation of
the computation performed by the LGMD (Fig. 8). The total
excitatory input to the LGMD is expansively dependent on angu-
lar velocity but is logarithmically compressed by local reduction
of driving force in the dendrites, resulting in membrane potential
changes that are a saturating function of velocity. In the main
dendritic trunk, this excitatory signal is summed with an inhibi-
tory signal related to the stimulus’ angular size; in our biophysical
model, this inhibitory influence tracks angular size sublinearly.
The resulting membrane potential is transformed by a final non-

linear, expansive spike-thresholding step at the LGMD’s SIZ. The
output firing rate thus reflects a multiplication between the time-
varying stimulus’ angular velocity and a negative exponential of
angular size.

Discussion
The simulations reported here were based on electrophysiologi-
cal data documenting, either directly or indirectly, the activity of
neurons at all successive stages of the excitatory pathway leading
to the LGMD. This offered us a unique opportunity to under-
stand how signals are encoded in real time starting from photo-
receptors up to the final spiking output of this collision-detecting
neuron. Broadly speaking, our results largely substantiate earlier
hypotheses concerning the processing of excitatory and inhibi-
tory signals within the LGMD. In particular, they identify where
the postulated logarithmic transform of speed-dependent excita-
tion takes place within the LGMD. They also offer a more nu-
anced perspective on the implementation of the multiplicative
computation describing the LGMD’s firing rate via a log-exp
transform.

Model validation
Our results are based on a detailed compartmental model pos-
sessing several realistic features, including dendritic morphology,
active conductance distribution, and spontaneous and evoked
synaptic activity. In the process of model generation, a large body
of constraining data has been used. Although it is undoubtedly
the most accurate LGMD model to date, it nonetheless makes
several simplifying assumptions. In addition to the lack of lateral
interactions between excitatory inputs (see Materials and Meth-
ods), a further simplifying assumption lies in the modeling of
feedforward inhibition. We abstracted the detailed structure of
the LGMD’s inhibitory dendritic branches to a simple synaptic
connection at the location where the inhibitory dendrites contact
the main dendritic trunk. Additionally, we have assumed the
activation of inhibition to depend on the area covered by the
stimulus, without explicitly modeling the dynamics and recep-
tive field structure of the neurons presynaptic to the LGMD along
the inhibitory pathway. Given the lack of precise information on
how these neurons are activated by looming stimuli, our ap-
proach makes simple but plausible assumptions that will need to
be verified experimentally. Thus, although we cannot draw any
specific conclusions about the detailed activation time course of
the inhibitory pathway to the LGMD during looming, we expect
it will have little impact on our understanding of how the excit-
atory pathway is activated, which was the main focus of this work.

The model also used a passive dendritic tree. While there is
some evidence for active conductances in the excitatory dendritic
tree, such as a hyperpolarization activated current (Ih; Dewell and
Gabbiani, unpublished observations), we do not yet know
enough about their potential distribution and properties to war-
rant their inclusion. We expect that inclusion of Ih would, if any-
thing, increase the signal compression observed through a
depolarization-induced increase in membrane resistance. Voltage-
gated K	 currents, if included, would lessen synaptic current satu-
ration but would also hyperpolarize the membrane, likely preserving
the logarithmic relationship between gexc and Vm. Dendritic spikes
have never been observed in the LGMD, thus voltage-gated sodium
channels, if present, are at low densities and unlikely to significantly
affect the compression observed. There are no detectable voltage-
gated calcium conductances in the dendrites (Peron and Gabbiani,
2009a). Despite the simplifications outlined above, the model repro-

Figure 8. Schematic of the computation performed by the LGMD. During a looming stimu-
lus, based on extrapolation from single-facet velocity tuning, the LGMD receives excitatory (left,
green) inputs proportional to the object’s angular velocity raised to a power of two to three. Our
model inhibitory inputs (right, red) are approximately proportional to the squares of the ob-
ject’s angular size, based on previous data. In our biophysical model, the excitatory signal
undergoes a logarithmic compression in the dendritic tree, while the effect of inhibitory input
on Vm results in a sigmoidal dependence on angular size. Based on earlier results (bottom,
cyan), the sum of these signals at the SIZ is then power-law transformed by the spike generation
mechanism, which in vivo is close to an exponentiation, resulting in an output relationship that
signals an angular threshold size through its firing rate peak.
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duced the main characteristics of the LGMD neuron’s responses to
looming stimuli reasonably well.

Logarithmic transform
The main thrust of our analysis was to simulate the membrane
potential response of the LGMD to looming stimuli and infer the
resulting representation of angular speed within the model. This
enabled us to conclude that a logarithmic compression of angular
speed is implemented between the conductances activating the
excitatory portion of the LGMD’s dendritic tree and the result-
ing, compound membrane potential recorded at the spike initia-
tion zone of the neuron. This logarithmic compression is mainly
caused by a saturation of the dendritic membrane potential to-
ward the reversal potential of its excitatory synapses, which in
turn can be traced back to the massive excitation impinging onto
the LGMD neuron during a looming stimulus. Ultimately, this
saturation requires individual synaptic currents to the LGMD to
be sufficiently strong, which is supported by at least three obser-
vations. First and primarily, single-facet stimulation causes depo-
larization in the LGMD strong enough to elicit spikes (Peron et
al., 2009; Jones and Gabbiani, 2010). The strength of those re-
sponses is precisely how we determined the excitatory synaptic
conductance values of the model. Second and correspondingly,
the LGMD also fires very early during looming stimuli, often
when the stimulus initially appears and has an angular size of only
few degrees. Third, since the looming stimulus sweeps across the
visual field, it constantly triggers new synaptic inputs rather than
restimulating old ones, removing short-term synaptic depression
as a competing mechanism that would weaken synaptic input
later during approach (O’Shea and Rowell, 1976). Additionally,
logarithmic compression in the model was robust enough to
withstand large changes in parameter values. In further simula-
tions, we halved the model’s membrane resistance to purpose-
fully change the amount of saturation, and we still observed a
similar logarithmic compression of excitatory input (data not
shown).

This computation relates the time course of a compound con-
ductance, distributed over the entire dendritic tree of the neuron,
with the membrane potential at the spike initiation zone. Thus, it
would have been difficult to identify the nature of this computa-
tion without a systematic experimental description of individual
inputs to the LGMD and the subsequent simulations reported
here. Future experiments recording the membrane potential
within the smaller dendritic branches of LGMD’s excitatory den-
dritic tree during the presentation of looming stimuli should
enable the verification and further study of the characteristics of
this logarithmic transform. A more detailed characterization
would require recording directly from the LGMD’s presynaptic
afferents, an experiment that still lies beyond current technical
means.

Logarithmic transforms have been postulated to take place
within neurons in the past, most notably to implement the loga-
rithmic compression of luminance information observed in ver-
tebrate and invertebrate photoreceptors (Laughlin and Hardie,
1978). In this case, the logarithmic compression is most likely
achieved within the phototransduction biochemical cascade,
through a very different mechanism than that proposed here (van
Hateren and Snippe, 2006). Similarly, synaptic saturation has
been shown to play a role in motion detection in the fly, but the
underlying mechanism is a local interaction between individual
excitatory and inhibitory inputs, quite different from the global
mechanism involving an extended dendritic tree described here
(Single et al., 1997).

Our results raise the question of whether a similar logarithmic
compression arises within the dendrites of looming sensitive neu-
rons in other species that implement the same angular threshold
computation as the LGMD. At present, very little is known about
their specific intracellular properties and the representation of
speed within their dendritic trees. Yet, this question could at least
in principle be addressed in the frog optic tectum, for instance,
since intracellular and patch-clamp recordings in conjunction
with visual stimulation are feasible (Matsumoto et al., 1986; Svir-
skis et al., 2009). More generally and speculatively, a similar log-
arithmic compression of dendritic signals may also occur in the
context of other neuron types. In visual cortex for instance, neu-
ronal subpopulations may be predominantly excited within their
dendritic trees in response to visual stimuli; if these excitatory
inputs were widely spatially distributed and sufficiently strong, a
similar dendritic integration scheme may ensue (Monier et al.,
2003; Jia et al., 2010).

Implication for other neural computations
By systematically tracking the representation of angular speed
along the excitatory pathway leading to the LGMD, we invariably
found that it was encoded nonlinearly. More specifically, the re-
sponses of neural populations presynaptic to the LGMD were
always better fit by power laws than by a linear function. Thus,
although the model explaining the LGMD’s firing rate to looming
stimuli is based on a multiplication of angular velocity with a
negative exponential of angular size, angular velocity itself was
never directly represented within the neural populations presyn-
aptic to the LGMD. Of course, this does not present an issue from
the point of view of the LGMD’s firing rate model and its log-exp
transform formulation, because the logarithm of speed raised to a
given power is simply equal to the logarithm of speed multiplied
by the associated power’s exponent: log � n � n log �. Nonethe-
less, this observation emphasizes that the most parsimonious im-
plementation of a model based on its output representation may
not turn out to be the one implemented within a specific neuro-
nal network. Hence, other functional models whose outputs are
described by the multiplication of two distinct terms, such as the
Reichardt model currently investigated in the fruit fly (Clark et
al., 2011; Eichner et al., 2011;), may never explicitly represent the
two terms being multiplied.

Concluding remarks
Our experimental results and simulations identified the biophys-
ical implementation of a logarithmic transform of angular speed
between the excitatory synaptic conductance inputs to the
LGMD and its membrane potential at the spike initiation zone.
The synaptic mechanism involved is based on the saturation of
the dendritic membrane potential during a looming stimulus as it
approaches the reversal potential of synaptic conductances
within the LGMD’s excitatory dendritic tree. This is a collective
computation, distributed over several thousand synapses, sug-
gesting that dendritic trees are able to carry out sophisticated
analog mathematical operations on their inputs before their con-
version into spiking output. Similar computations may underlie
sensory processing in other neurons across nervous systems.
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