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Abstract. We define and study two-dimensional, chiral conformal field theory by the
methods of algebraic field theory. We start by characterizing the vacuum sectors of
such theories and show that, under very general hypotheses, their algebras of local
observables are isomorphic to the unique hyperfinite type III1 factor. The conformal
net determined by the algebras of local observables is proven to satisfy Haag duality.
The representation of the Moebius group (and presumably of the entire Virasoro
algebra) on the vacuum sector of a conformal field theory is uniquely determined
by the Tomita-Takesaki modular operators associated with its vacuum state and its
conformal net. We then develop the theory of Moebius covariant representations of a
conformal net, using methods of Doplicher, Haag and Roberts. We apply our results
to the representation theory of loop groups. Our analysis is motivated by the desire
to find a "background-independent" formulation of conformal field theories.
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I. Introduction

Eight years ago, the seminal paper of Belavin, Polyakov and Zamolodchikov [1]
triggered renewed interest among theoretical physicists in two-dimensional conformal
field theories and their infinite-dimensional symmetry algebras (the Virasoro algebra,
Kac-Moody algebras and VF-algebras). An impressive body of knowledge concerning
conformal field theories has since been accumulated. Two-dimensional conformal field
theories have been found to be important tools in the theoretical analysis of many
physical systems. Among such systems are two-dimensional statistical systems at a
critical point (theory of critical phenomena) [2], systems of condensed matter physics,
such as quantum Hall fluids [3], polymers [4], Kondo systems [5]. Quite generally,
physical systems exhibiting critical phenomena involving infinitely many degrees of
freedom which - possibly after dimensional reduction - form a subsystem in a two-
dimensional space-time can be studied with the help of techniques from conformal
field theory.

Perhaps the deepest applications of these theories have been made in the context
of string theory [6]. Conformal field theory is to string theory what the theory of
irreducible, unitary representations of the Poincare group is to relativistic quantum
field theory. A classification of conformal field theories would therefore appear to
represent an important issue. Much work has, in fact, been devoted to this problem.

One of the fascinating aspects of conformal field theories is that their analysis
involves a wide range of fairly sophisticated mathematical tools: the theory of infinite-
dimensional Lie algebras and loop groups [7], algebraic geometry [8], the theory of
tensor categories [9], operator algebra theory, in particular Jones' theory of inclusion
of subfactors [10], BRST cohomology and quantum group theory [11], etc . . .

Algebraic quantum field theory, founded by R. Haag in 1955, is a precise
mathematical formulation of quantum systems with infinitely many degrees of freedom
in the language of the theory of C* - and von Neumann algebras. For a survey of results
and methods and an account of the history see [12] (and refs. given there). Algebraic
quantum field theory enables one to study structural features of the quantum theory
of systems with infinitely many degrees of freedom in a general and mathematically
clean way independent of special models. Among general properties of such systems
studied with the methods of algebraic quantum field theory are: the classification
of parastatistics [13, 14], the localization properties of charged fields in quantum
field theories with a non-vanishing mass gap [15], quantum electrodynamics and
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scattering theory of infraparticles [16], the quantum-mechanical Noether theorem
[17], a general formulation of the Goldstone theorem [18], etc .. .Most important,
the algebraic formulation of quantum field theory provides a precise mathematical
description of superselection rules and the conserved charges associated with them
(e.g., the electric charge, the baryon number, isospin, ...) [19], although it does
not directly elucidate their physical origin. Superselection sectors are interpreted as
Hubert spaces of states carrying inequivalent representations of a net of algebras of
local "observables". Superselection sectors can be composed in a way analogous to
taking the tensor product of two representations (or the corresponding representation
spaces) of a compact group. Mathematically, they can be viewed as the objects of a
tensor category [20, 10]. Recently, Doplicher and Roberts have brought the general
theory of superselection rules and quantum statistics to a high degree of perfection
by showing that the tensor categories of superselection sectors in four- or higher
dimensional quantum field theories are isomorphic to categories of representations of
compact groups. These groups play the role of symmetry- or global gauge groups
of the underlying quantum field theory. When they are Lie groups their Lie algebras
have the physical interpretation of algebras of conserved charges associated with
the superselection rules. Doplicher and Roberts also show how one can reconstruct
algebras of charged fields with Bose-Einstein- or Fermi-Dirac statistics from the net
of algebras of local observables and the superselection rules.

Unfortunately, most of their results do not hold, in general, for quantum field
theories in space-times of dimension two and three. This can be understood by
recalling that particles in space-times of dimension three may obey some quantum
statistics other than Bose Einstein- or Fermi-Dirac statistics, so-called braid statistics
[21]. It had already been noticed in the early seventies that charged fields of certain
quantum field theories in two space-time dimensions describing topological solitons
can form algebras not described by local commutation- or anticommutation relations;
(one then speaks of "exchange algebras" and "fields with braid (group) statistics"). The
same phenomena are encountered in three-dimensional Chern-Simons gauge theories.
The structure of superselection sectors in such theories cannot be reconstructed from
the representation theory of a compact symmetry group, and one must search for
an adequate notion of "quantized symmetries", such as quantum groups, whose
representation theory reproduces that structure (see, e.g., [10]). It has turned out that
the algebraic formulation of quantum field theory provides the right tools leading to a
general understanding of braid statistics in two [22] and three [23, 24, 25] space-time
dimensions. In these studies, conformal- or gauge invariance were not used. As a
consequence, certain structural properties that one can derive e.g., from conformal
invariance (structure of local algebras of observables, Haag duality, ...) simply had
to be assumed from the outset. The purpose of this paper is to present a general
definition of two-dimensional conformal field theories in the context of algebraic
quantum field theory and to study their properties by algebraic methods. There are
several reasons which motivate this investigation. Before presenting them, we wish to
sketch how local algebras arise in conformal field theories on the example of a theory
whose chiral algebra is generated by its energy-momentum tensor (i.e., the Virasoro
algebra). Some other examples arising from different chiral algebras (current algebras)
will be examined in detail in Chap. III.

We assume the central charge c of the theory to be fixed. Because of conformal
invariance, the stress-energy tensor splits into a left-moving and a right-moving part,
each one defined over a compactified light ray, Sι = {z 6 C | \z\ = 1}, [26]. The
left-moving part of the energy-momentum tensor, T(z), for example, can be used to
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define von Neumann algebras of operators acting on the vacuum sector of the theory
(i.e., in the representation corresponding to the lowest weight h = 0) by setting

^ ( / ) := {expiT(f) | / a real C°° function with supp/ c /}" . (1.1)

We recall that ^Sr denotes the algebra of bounded operators commuting with
^ , and j@' := (J&'Ί. In this way we obtain a collection, {A(I)}IcSu of von
Neumann algebras indexed by open, non-dense intervals on Sι satisfying the following
properties (see Definition 2.3).

(i) Isotony: I C J => Λ>{T) C ^4(J).
(ii) Locality: I n J = 0 => ^4(1) C ^ ( J ) ' .

(iii) Moebius covarίance: There exists a unitary representation π 0 of the Moebius
group PSU(l 1) on the vacuum sector such that

πo(A)^β(I)πo(Af = ^{A /), VA e PSU(l 1), V / C 5 1 ,

(see Appendix I for the notation).
It turns out that, quite independently of the choice of an algebra of local, chiral fields,
i.e., of the so-called chiral algebra (e.g. a current algebra), the local algebras (defined
similarly as in Eq. (1.1)) are always isomorphic to the unique hyperfinite type ΠIj
factor and satisfy properties (i)-(iii). Of course, the superselection structure of the
theory under consideration depends on the choice of the underlying chiral algebra.
After passing from chiral algebras of unbounded fields to local von Neumann algebras
of bounded operators which, as just mentioned, are universal, the properties of the
theory are coded into the assignment of an algebra ~4{I) to every interval / C S1,
in such a way that properties (i)—(iii) hold. A more concise way of specifying a
conformal field theory is to choose a unitary representation τr0 of the Moebius group
PSU{\ 1) on a separable Hubert space 3@ which "acts properly" on a subalgebra J$
contained in the algebra of all bounded operators on 3@ isomoφhic to the hyperfinite
type IIIj factor. What we mean by a "proper action" of PSU(1 1) on Jβ will be
explained in Definition 2.2.

Next, we explain why we wish to analyse conformal field theories in such
generality. One reason originates in an aspect of string theories which we regard as
unsatisfactory: their very formulation is usually based on choosing a specific model
of classical space-time. This is rather unsatisfactory, because one would hope that a
quantum theory of gravity can be formulated without reference to a classical space-
time concept and that it will in fact predict possible models of classical space-time,
rather than involve them in its formulation. Following this line of thought, one would
like to define the concept of a string vacuum independently of a classical model of
space-time and then derive constraints on the structure of space-time from properties
of string vacua. It is expected that string vacua can be constructed from N = 2
superconformal field theories of adequate central charge, and there is growing evidence
that one can associate classical space-times (e.g. Calabi-Yau manifolds) to them [27,
28]. We thus consider the model-independent formulation of conformal field theory
developed in this work as part of a program aiming at defining what is meant by
a string vacuum independently of any a priori ideas about classical space-time and
then reconstructing as much as possible of the structure of space-time from algebraic
invariants associated with a given string vacuum. In this regard, we expect that a
formulation of world-sheet supersymmetry in the framework of algebraic quantum
field theory will be of importance for further developments; see the remarks at the
end of Chap. II.
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Another one of our motivations comes from the theory of loop groups. Our
results show that methods of algebraic quantum field theory are useful to study
positive-energy representations of loop groups. In particular, we show how one can
introduce a notion of generalized tensor product of representations corresponding to
the composition of sectors in algebraic quantum field theory. Similar considerations
are also contained in interesting recent work of Wassermann [29].

Finally, as already advocated by Buchholz, Mack and Todorov, algebraic quantum
field theory might provide a useful framework for the classification of rational
conformal field theories [30]. In particular, we expect that their results concerning
the £/(l)-current algebra can be extended to models based on general loop groups
(see Chap. III).

Besides the work of Wassermann and of Buchholz, Mack and Todorov mentioned
above, we attract the reader's attention to the work of Buchholz and Schulz-Mirbach
[31], of Fredenhagen [32] and to a recent preprint by Guido and Longo which, among
other things, contains some very useful results on charge conjugation and Moebius
covariance [33]; (similar issues will be discussed in detail in Chap. IV1). However, as
far as we know, there hasn't been, yet, a serious effort aimed at a general definition
of conformal and superconformal field theories in the algebraic framework and at
investigating detailed structural properties of such theories.

Next, we briefly summarize the contents of this paper. Chapter II is devoted to
the definition of conformal field theories in the algebraic context and to the study of
properties of the vacuum sector. We emphasize the point of view that a conformal
field theory can be defined by specifying a single von Neumann algebra and a unitary
representation of the Moebius group acting "properly" on this algebra (Definition
2.2). A complementary point of view is to specify a net of local algebras on a Hubert
space and a vector cyclic and separating for each algebra. It is likely that these two
approaches are equivalent. The relation between them is explained in Conjecture 2.27.
In Chap. II we also investigate properties of the vacuum sector: the local algebras are
shown to be hyperfinite type III1 factors (Theorem 2.13) if the infinitesimal generator
of rotations has certain trace-class properties (Lemma 2.12), and Haag duality is
proven to be generally valid (Theorem 2.19). A converse of a recent result of Borchers
concerning a relation between the representation of the Moebius group and Tomita-
Takesaki theory is then proven (Theorem 2.20). We complete our description of the
vacuum sector by identifying its local internal symmetries (Lemma 2.22) and by
explicitly constructing the antiunitary operators implementing the inversions in the
representation of the Moebius group (Theorem 2.26). Some of the technical proofs
are given in Appendix II, whereas Appendix I summarizes basic geometrical facts
about Moebius transformations and sets up the notation.

In Chap. Ill, we apply the general results of Chap. II to loop groups of the
A-D-E series. Some basic facts about the representation theory of loop groups and of
corresponding Kac-Moody algebras are summarized in Sect. IΠ.1-ΠI.7. In Sect. III.8,
the vacuum sectors are identified, and, in Sect. III.9, we prove that the local algebras
satisfy all the properties of Chap. II in a vacuum representation (Theorem 3.2) and
are hyperfinite type IΠj factors in charged sectors (Theorem 3.3). The corresponding
result for vacuum representations of the Virasoro algebra is stated in Theorem 3.4.

Chapter IV contains an analysis of the superselection structure of conformal
field theories. After some definitions and basic properties (Sect. IV. 1), we define

1 As this work was already written, we received a preprint of Fredenhagen, Rehren and Schroer as
well as one by Wiesbrock on related matters; see ref. [77]



574 F. Gabbiani and J. Frohlich

a composition of representations in Sect. IV.2. We then analyse subnets associated
to the punctured circle and prove that they satisfy essential duality. In Sect. IV.4 we
recall the definition of braid statistics operators by now familiar in algebraic field
theory [22-25], and in Sect. IV.5, we extend classical results of Doplicher Haag and
Roberts [13, 14] to the present setting. When analysing representations which are not
locally irreducible (see Def. 4.22) we use a technical assumption which is given in
Eq. (4.19). This section closes with a conjecture concerning the statistical dimension
of a charged sector, Eq. (4.27), which has far reaching consequences. In Sect. IV.6,
we sketch some applications to the representation theory of loop groups.

It is worth mentioning that many interesting problems are left unsolved in this
work. Besides our conjecture on the statistical dimension of a sector and a careful
elaboration of results which are only sketched in Sect. IV.6, we expect that one can
construct charged fields ("vertex operators") for chiral WZW-models along the lines
presented in [30].

II. Structure of the Vacuum Representation of a Conformal Field Theory

II.1. Conformal Nets of Operator Algebras

Let 3@ be a separable Hubert space, 3B(3@) the set of bounded operators on J^,
?S(J^) its unitary group and TΓ: PSU(l 1) —> %(β&) & strongly continuous,
projective representation of the Moebius group.2

Remark 2.1. A projective (unitary) representation TΓ of PSU(l 1) always defines a
projective (unitary) representation of SU(1 1) such that +1 and —1 are mapped onto
the same element in %(β$). We find it convenient to denote this representation by
the same symbol TΓ.

Definition 2.2. A representation TΓ of the Moebius group on 3$ acts properly on a
von Neumann algebra Λ? (or equivalently, the von Neumann algebra Λ> transforms
properly under the representation TΓ), if

(i) the one-parameter subgroup of dilatations D(t) is an automorphism group of ^ :

) =Λ Vΐ G

(ii) the rotation through an angle TΓ on S1,

_

maps Λ> into its commutant:

π(Ro)^π(Rof C Λ!,

(iii) the one-parameter subgroups of translations, T(p) and of special conformal trans-
formations S(n) act as one-sided compressions of ,/&\

C ^ \/p > 0 ,

π(S(n))^π(S(n)f C ̂  Vn > 0,

2 All group representations considered in this paper are tacitly assumed to be strongly continuous
and have values in ύέό(M), from now on
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(cf. Appendix I for the notation).

Our first goal is to show that a von Neumann algebra ,/& which transforms properly
under the Moebius group determines a local, isotone net of von Neumann algebras
which transforms covariantly under the Moebius group.

Definition 2.3. Let {^(I)}ics
ι ^ e a collection of von Neumann algebras acting

on the Hubert space J&, indexed by open, non-dense intervals of the circle.3 The
collection {^&(I)}jcs

ι *s called a local, isotone, Moebius covariant net of von
Neumann algebras (shortly, a conformal net) if it satisfies the following properties:

(i) I j C I ^ yέ{lx) C ,A(I2) (isotony);
(ii) Ixcr2^ yS(Ix) C ,A(I2)

r (locality); here Γ := Sι\I;
(iii) there exists a projective representation π of the Moebius group on 3$ such that

π(A)yό(I)π(Aγ = ,/ό(A / ) , MAe PSU(l 1), / c Sι ,

where A • I denotes the image of the open non-dense interval / under the action
of A

Lemma 2.4. (i) If ,Λ is a von Neumann algebra transforming properly under a
projective representation π of the Moebius group on 3$, then there exists a conformal
net {..^(/)}/c5i such that ,£ = ,/S{S+), where S+ := {z e Sι \lmz> 0}.
(ii) If {<sf?(ΐ)}icsι ^ a conformal net of von Neumann algebras acting on a Hubert
space ,'^f, then J4 := ./%(S+) transforms properly under the Moebius group.

Proof. For the proof it will be convenient to use the non-compact picture of Sι

obtained by performing a stereographic projection which maps — 1 e Sι onto oo (see
Appendix I for details). Under this map, SU(l 1) is mapped onto SL(2; W) and the
action of SU(1 1) on Sι corresponds to the action of SX(2; M) as fractional linear
transformations on R.

Ad (i). If ,/S transforms properly under SU(1 1), we define

) : = ^ , (2.1)

:= π(A\/3π(Af , (2.2)

where A e SU(l 1) is a group element which maps S+ onto / : A S+ = /. We
first have to show that ,/&(!) is well defined. Let Aλ, A2 be two elements of SU(l 1)
which satisfy Ai S+ = /, i = 1, 2. Then A3 := A^1 A2 maps S+ onto 5 + and the
endpoint set {+1; -1} of S+ onto itself. There are two possibilities:
(a) A 3 (+l) = +1 and A3(-l) = - 1 . It is then easy to check that A3 = ±D(i), for
some t.

(b) A 3 (+l) = - 1 and A 3 ( - l ) = + 1 . It follows that A3 = ±(l _°. j D(t) for
some t, so that A3 maps S+ onto S_. \ υ ~ z /

Therefore only case (a) can occur. By assumption, π(±D(t)) is an automoφhism of
• ^(S^) so that the right-hand side of Eq. (2.2) is independent of the choice of A.

To prove locality, it is sufficient to check that y?(S_) C y?(S+)'. But

Λ{S_) = π(Ro%y(S+MRof C Λ = M

by assumption.

3 Throughout this work, the intervals I c Sι considered are always non-dense and open
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To prove isotony, it is sufficient to check that ,A{I) C ̂ 4(S+) for / C S+. This is
clearly the case if / = T(a) S+ or / == S(a) S+, for a positive α. Let / correspond
to the interval (co; q ) C R+, c0, q G R + in the real picture. Then

/ 1 \ f e e \
Hence, J = 51 — IΓI —^- L - I S+9 0 < c0 < cx < oo and by assumption,

\ c i / \ c i ~ co/
C ^(S+). Covariance of the net is obvious.

Ad (ii). In the real picture, R+ is the image of S+. Since

D(t) M+ = R + , Vt G R,

f (α) l + = ( α ; o o ) C l + , a > 0,

5(α) R + = ί 0; - ) C R + , α > 0,

(i) and (iii) of Definition 2.2 follow by covariance of the net and isotony.
Finally, by covariance and locality,

C

so that (ii) of Definition 2.2. holds. This completes the proof of the lemma.

We now restrict our attention to an algebra ^S and a representation τr0 of the
Moebius group associated with "the vacuum sector" of a conformal field theory. That
is, we assume the existence of a unique "vacuum vector" invariant under the action
of PSU(l 1).

Definition 2.5. Let 3@ be a separable Hubert space, π 0 a unitary representation of
the Moebius group on 3@ which acts properly on a von Neumann algebra ^ . We
denote by {^£(I)}ics

ι m e conformal net constructed in Lemma 2.3. Let us assume
that

(i) the spectrum of the generator of rotations of PSU(l 1) is positive (positive-
energy representation).
(ii) There exists a unique vector Ω G 3@ invariant under PSU(1 1), (vacuum

vector).

(iii) Ω is cyclic for the von Neumann algebra 21 := / (J *A(ΐ)\ generated by
the net {^(/)} / c S i . ^ Jcs 1 J

If properties (i)-(iii) are satisfied, we say that {J^; τr0; ̂  i?} determines the
vacuum sector of a conformal field theory, or, equivalently, the vacuum representation
of the conformal net {^(I)}IcSi

In a positive-energy representation, the generators of translations and of special
conformal transformations have the following spectral properties.

Lemma 2.6. The spectrum of the generator of translations is always positive in a
positive-energy representation π0 of PSU(l 1). The spectrum of the generator of
special conformal transformations is negative.

Proof A unitary representation π 0 of PSU{\ 1) lifts to a unitary representation
π 0 of SU(\\ 1) such that τro(—1) = TΓO(1L). The positive-energy condition means
that the spectrum of the generator of rotations R(t) is positive (cf. Appendix I for
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the notation). The only irreducible unitary representations of SL(2; M) = SU(l 1)
which fulfill these two conditions are members of the holomorphic discrete series
[40]: 7Γ+, n e 2 Z + . Hence τr0 is a direct sum of irreducible representations
of the holomorphic discrete series. One checks easily, in the realization of these
representations by operators acting on holomorphic functions on the upper half plane
[41], that the spectrum of the generator of translations is positive. Similar arguments
may be found in [42].

Since the one-parameter subgroups of translations and of special conformal
transformations are conjugate in SL(2; M), R0T(P)RQ1 — S(—p), it follows that
the spectrum of the generator of special conformal transformations is negative. This
completes the proof of the lemma.

We now derive some standard properties of the local algebras in the vacuum
sector. Most of our arguments are adaptations of well-known results to the present
setting. The proof of Haag duality given in Sect. II.2 is an application of a recent
theorem of Borchers [34]. The following theorem is obtained by applying twice the
Reeh-Schlieder theorem.

Theorem 2.7. Let \β@\ τr0; J&\ Ω} be the vacuum sector of a conformal field theory.
Then

where the symbol means closure in the Hubert space norm, and 21 has been defined
in Definition 2.5, (iii).

Corollary 2.8. (Reeh-Schlieder) The vacuum vector Ω is cyclic and separating for
each local algebra yά(I), I C Sx.

Proof of Corollary 2.8. Since the net {^(I)}IcS

ι *s Moebius-covariant and Ω is
invariant under Moebius transformations, it follows at once from Theorem 2.7 that Ω
is cyclic for any local algebra J&(ϊ). The separating property is now a consequence
of locality. This completes the proof of the corollary.

Proof of Theorem 2.7. Given an interval I C Sι define

If /(/) is the length of the interval /, normalized in such a way that l(Sι) — 2τr, then
the von Neumann algebras J?(J) have the following properties:

(i) 1(1) = l(J) implies JS(I) = 3&(J).
(ii) 1(1) < l(J) implies J}(I) C JB(J).

(iii) If {In}n=ι 2 i s a n increasing sequence of intervals such that 1(1 n) —> 2π
(n —> oo) then

(iv) The one-parameter group of rotations πo(R(t)) induces automorphisms of 33(1)
satisfying the spectrum condition. By applying the Reeh-Schlieder theorem, as given
in [35], we obtain that

C

where J is any interval on Sι such that l(J) > 1(1).
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Next, we consider intervals on the circle of the type / = (α; —1), a G
(see Appendix I for the notation, or the next figure),

-O
and define

. /=(<*;-1)
aes\{-i}

The von Neumann algebra W has the following properties:
(v) The translations define a one-parameter automoφhism group of W satisfying

the spectrum condition.

(vi) If {Jn = (an; — 1), an G S'1\{—l}}ri=1 2 is an increasing sequence of

intervals such that l(Jn) —> 2π (n —> oo) then ^ ( J n ) C ̂ ( J n + 1 ) and

(vii) Applying once again the Reeh-Schlieder theorem [35] we see that

C ^ ( 5 + ) i 7 , with +

Let {^n}n=i 2,... t>e a n increasing sequence of intervals as in (iii). Then

where ~s means strong closure. But

Here we applied the Reeh-Schlieder theorem as formulated in (iv) and we chose Jn

such that Jn = (α n ; —1), l(Jn) > l(In), i.e., the sequence of intervals {*/n}n=i52,...
satisfies the properties of (vi). Hence,
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where we applied again the Reeh-Schlieder theorem, as given in (vii). We have shown
that

a/2 C ^
Since the converse inclusion is obvious, this concludes the proof of the theorem.

The Reeh-Schlieder property means that each local algebra ,A(I), I C Sι is in
standard form [36]. We can then define the Tomita operators [36] 5 7 , W c S1, as
the closure of

SIAΩ:=A*Ω, A e Λ(I).

The modular conjugation J 7 and the modular operator Δ1/2 are obtained by polar
decomposition of Sj,

Q - j . Λι/2

They have the property [36] that

Y (2.3)

VJ C Sι, t e R. (2.4)

We will show, later on, that these operators always implement geometric transforma-
tions [37] in the present situation.

We may now use well-known arguments of Driessler [43] to show that the local
algebras of the vacuum sector of a conformal field theory are factors of type IΠj [44].

Lemma 2.9. In the vacuum sector of a conformal field theory, the local algebras
), I C S\ are factors of type IIIV

Proof It is sufficient to show that <A = Λ(S+) is a factor of type IIIj. In the
real picture, S+ is mapped onto R+ . Since f(a)R+ C I + , Vα > 0, it follows that
R + is monotone in the sense of [43]. Let PΩ be the orthogonal projection onto the
vacuum vector Ω. It follows from the spectral properties of the translation operator in
a positive-energy representation π 0 of PSU{\ 1) that τr0(T(α)) converges weakly to
PΩ as a —> oc [45]. The proof of the lemma is now completed by applying Theorem
2.2. of [43].

Definition 2.10. Let 71? I2 be two intervals on the circle; we write I{ <£ J2 if the
closure of Iγ is contained in the open interval I2.

Definition 2.11. The split property is said to hold for a conformal net if, given two
intervals I{, I2 such that Ix (G I2, there exists a type 1^ factor .M such that

The split property for a vacuum conformal net follows from a result of Buchholz,
D'Antoni and Fredenhagen [46]. We formulate this result under assumptions which
are typical of conformal field theories constructed from the representation theory of
loop groups (see [47], Remark 13.13).

Lemma 2.12. Let {3$\ π o; ^ Ω} be the vacuum sector of a conformal field theory
and K the generator of the one-parameter group of rotations on S1. If for β > 0 the
operator e~@κ is trace-class and there exist positive constants βQ, n such that

\\e-βK\\ι<e<β°'f})n, / 3 > 0 , / ? ^ 0 (2.5)

holds then the split property holds for the net {-^CO}7csi of Definition 2.5.
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Proof. The results of [46] are formulated in terms of a local net on Minkowski
space-time. However, the proof given there does not use any properties specific
to this particular situation. We reformulate the theorem of Buchholz, DΆntoni and
Fredenhagen under prerequisites which are sufficiently general for our purposes: 4

(i) Let j&x C ^ 2 C J^ 3 C ^ 4 be a sequence of inclusions of von Neumann
algebras.
(ii) Let U(t) be a one-parameter group of unitaries such that for \t\ < δ,

Uit^Uitf C Λi+ι , i = 1, 2, 3 .

(iii) Assume that the generator K of U(t) = eιKt has positive spectrum including
the eigenvalue zero with multiplicity one, and let Ω be the unique (up to a phase)
corresponding unit eigenvector; Ω is supposed to be cyclic and separating for ^^
i = 1, 2, 3, 4.
(iv) Assume that the maps θβ : <A% —> 3%, i = 1, 2, 3, 4, /? > 0 defined by

θβ(A) := e~βKAΩ, A G ̂  , i = 1, 2, 3, 4

are nuclear and that the estimate (2.5) holds, as β tends to zero, for the trace norm
of θβ (see [46]). Then there exists a type 1^ factor ^M such that ^ C yM C ̂ 4 .

The proof follows word for word the one given in [46] with the identification

4, φ 4
Under the assumptions of the lemma, e~f3K is trace class so that the maps θβ

are nuclear for any local algebra ^ ( / ) , / C Sι. Given Ix <£ /4, there exist /2, /3,
such that I{ <& I2 <£ I3 <& /4. Setting ^ := ̂ (7^), z = 1, 2, 3, 4, and applying the
previous argument completes the proof of the lemma.

An immediate consequence [50] of Lemma 2.12 is that the local algebras in the
vacuum sector of a conformal field theory are hyperfinite (i.e. are the weak limit of
matrix algebras), since ^ ( / ) , / C 5 1 , can be continuously approximated from the
inside (or the outside) by local algebras [31]. We summarize the previous discussion
in the following theorem.

Theorem 2.13. Under the assumptions introduced in Definition 2.5 and in Lemma
2.12, each local algebra y&{ϊ), I C S1 in the vacuum sector of a conformal field
theory is isomorphic to the unique hyperfinite factor of type IΠγ.

Remark 2.14. It follows from Theorem 2.13 that the whole information about a
conformal quantum field theory is encoded in the map

/ - MX) (2.6)

assigning to each interval a hyperfinite type III{ factor in 3@. As observed in Lemma
2.4, the map (2.6) is fully determined by the representation τr0 of the Moebius group on
the vacuum sector and the algebra ^ = yό(S+). We shall also prove, in Theorem 2.19,
that the net / ι-> ̂ ( / ) and the vacuum state Ω already determine the representation
τr0 of the Moebius group (provided π 0 exists).

The following conditions are certainly not optimal. For recent developments, see [48, 49]
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II.2 Moebius Covariance and Tomita-Takesaki Modular Operators; Haag Duality

We start this section with a definition of Haag duality.

Definition 2.15. In the vacuum sector of a conformal field theory, the net {

is said to satisfy Haag duality (to be dual), if for any open, non-dense interval

holds, where i 7 := (Sι\I)° is the interior of the complement of / in Sι.

Haag duality was checked by different methods in several models [51-53]. It is a
crucial property for the applicability of the algebraic framework to the analysis of the
superselection structure of quantum field theories [13]. It is then natural to investigate
under which general assumptions models give rise to local algebras satisfying Haag
duality. J. Bisognano and E. Wichmann showed [37] that Wightman quantum field
theories lead to (essentially) dual nets, provided that the underlying quantum fields
satisfy some regularity conditions (see also [54] for a general formulation of the
Bisognano-Wichmann theorem). Recently, D. Buchholz and H. Schulz-Mirbach [31]
adapted the arguments of J. Bisognano and E. Wichmann to prove Haag duality for
conformal field theories. We shall give a proof of duality for the net {y^CD}/csi
in the vacuum sector of a conformal field theory which does not make reference to
the underlying (Wightman) quantum fields. This result will then be applied to the
construction of models, starting from the representation theory of loop groups.

Let SU(l 1)± be the extension of SU(1 1) by matrices having determinant - 1
and PSU(l 1)± the corresponding group of geometric transformations of the circle
(see Appendix I). We denote by (ES{3^)_ the set of antilinear unitary operators in 3&
and by %ά(y@)± the group of unitary and antiunitary operators on 3@. Following the
terminology introduced by Wigner [55], we define a corepresentation as follows.

Definition 2.16. Let G be a group. A homomorphism

π : G

into the group of (anti-) unitary operators of a Hubert space 3$ is, called a
corepresentation of G.

Remark 2.17. (i) Clearly, a group G admits non-trivial corepresentations π only if it
has a normal subgroup Go of order two such that π(G0) C %(3@). We will denote
by π the restriction of π to Go.
(ii) We are interested in strongly continuous corepresentations of SU(l 1)± which

map matrices of determinant + 1 , - 1 into %(3$)+9

 ύάί(β$)_, respectively,
(iii) Let π be a corepresentation of SU(l 1)±. Then π := π | 5 ί / ( 1 ; 1 ) is a unitary

representation of SU(l 1), and Js+ := π(Is+) is a conjugation ( J | + = 1 ) satisfying

J 5 + π ( A ) J 5 + = π(A), VΛ G SU(l 1). (2.7)

Conversely, since SU(l 1)± is the semi-direct product of SU{1 1) and {1 Is }

by the outer automorphism φ of SU(l 1) which maps A e SU(l 1) onto A (see
Appendix I), given a representation π of SU(l 1) and an antiunitary conjugation
Js+ such that Eq. (2.7) holds, we can construct a corepresentation π of SU(l 1)±

such that ft\SU(l. D = π and π ( / 5 + ) = J 5 + .
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Definition 2.18. Let π be a corepresentation of PSU{\ 1)± on the Hubert space M.
A local net {^(I)}icsι *s s a ^ t0 transform covariantly, under improper Moebius
transformations if

/ ) , WA e PSU(1 1)± , / C Sι,

where A / denotes the image of / under the action of A.

Theorem 2.19. Let \β$\ τr0; j&\ Ω} be the vacuum sector of a conformal field theory.
(i) The modular conjugation Js+ of Λ = ,A(S+) with respect to Ω satisfies the

following commutation relations with SU{\ 1):

Js+π0(A)J3+ = πo(A), \/A € SU(1 1)

consequently, τr0 extends to a corepresentation τr0 of SU(l 1)^ on β&.
(ii) The net {^(I)}Icsi is dual and transforms covariantly under the corepresenta-

tion τr0 of the improper Moebius transformations.
(iii) The representation π 0 of the Moebius group is uniquely determined by the net

and the vacuum vector Ω. It is the unique representation of SU{\ 1) on 3@ for which
the generator of translations has positive spectrum, which has Ω as an invariant vector
and under which the net transforms covariantly.
(iv) The one-parameter group of dilatations of SU(\ 1) coincides with the modular
group of the algebra <yg(S+):

πo(D(t)) = Λ% .

Proof. Ad (i). Since any element of SU{\ 1) can be written as a product of
dilatations, translations and special conformal transformations (see Appendix I), it
is sufficient to check that Js has the right commutation relations with these three
one-parameter subgroups. That is, the equations

Js+ττ0(S(n))Js+ - τro(T(-n)),

Js+π0(D(t))Js+=π0(D(t)),

hold. By Lemma 2.6 the generator of the one-parameter group V(p) := ττ0(T(p)) has
positive spectrum and the generator of W(n) := πo(5(n)) has negative spectrum. By
assumption, V(p), p > 0, and W(ή), n > 0, act as one-sided compressions of the
algebra ^S = ^S{S+) (see Def. 2.2). Hence, we may apply Theorem II.9 of Borchers
[34] to obtain

= πo(T(-p)),

= τro(T(e-2πV))

= πo(D(t)T(p)D(tΓι), (2.8)

and

Js+7r0(S(n))Js+ = π o (T(-n)) ,

= πo(D(t)S(n)D(tΓι). (2.9)
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Since πo(D(s)) is a one-parameter group of automorphisms of ^β leaving the vacuum
vector Ω invariant, it follows from a well-known result of Takesaki [36] that πo(D(s))
commutes with Js and Ag :

Js+π0(D(s))Js+ =πo(D(s)),

Z^ + π 0 (D( S ) )Z^f = ττo(D(s)). (2.10)

This completes the proof of (i).

Ad (ii). We first prove duality. It is sufficient to prove the
since by SU{\ l)-covariance of the net, this implies ^S{I)' = y&{If) for an arbitrary
interval I c Sι. From locality, we know that

so that it is sufficient to check the converse inclusion. The rotation Ro = R(l/2) =

. ) e SU(l 1) maps S+ onto S_ and satisfies Ro = RQ1. Hence,

by covariance of the net under SU(1 1). Thus,

= MβJ,

where we used successively the commutation relations shown in (i), property (2.3) of
the modular conjugation and the covariance of the net under SU(l 1). Conjugating
on both sides by Js we obtain

+ J S + . (2.11)

By locality, Λ(S+) C ^(S_)f so that

y c j y

The first equality follows again by Tomita-Takesaki theory and the second from Eq.
(2.11). This proves duality.

To prove SU{\ 1)± covariance of the net, it is sufficient to check that the net
transforms covariantly under Js , since SU{\ 1)± is the semi-direct product of

SU(\ 1) and {1; Is }. Let / C S'1 be an interval and A G SU(l 1) be such that
A - S+ = /. Then by SU(l l)-covariance of the net, (i) and duality,
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But A S_ = A Is S+ = A Is A~ι /, and one checks by direct computation

that A - Is+ - A~ι =IS+, MA G 677(1 1). Hence,

This completes the proof of (ii).

Ad (iii). Let (α; /?), (7; δ) C Sι and A e SU(1 1) be such that A (a; β) = (7; δ)

(see Appendix I for the notation). If {J^a.^ Z\^.^} is the modular data associated

to {^((α; /3)); i?} (see Eqs. (2.3), (2.4)), then it follows easily from SU(l; 1)-

covariance of the net and SU(l l)-invariance of the vacuum vector that

(2.12)

In particular,

Notice also that, by duality,

- T
α; β) — J(β; a)

l/2

(a; β)
- Δ~l/2

so that by functional calculus,

Since ££7(1 1) is generated by products of reflections and 7ro(/(a;/g)) = J(a\βy ^
follows that the representation τr0 of SU{\ 1) is entirely determined by the modular
structure of the net, that is, by the vacuum state and the net. Uniqueness follows from
the uniqueness of the modular conjugations with respect to Ω. This completes the
proof of (iii).

Ad (iv). It follows from (2.8), (2.9) and (2.10) that

^ i t = πo(D(t)AD(tΓl), WL e SU(1 1).

Since the equation

may be written as

Alt T Λ~τ~t T
ZΛs+Js+

AAs+ — Js+

it follows that

In particular,

holds.

ΐ* = fto(D(t)A DitΓ1), VA € SU(l 1)±

Ait T Λ~ιt — Λiι π (T ΛΛ~it

. 14)
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We temporarily assume that we have proven the following relation:

Equation (2.15) implies that

nS+J(-ί;ί)nS+ - nS+

and, plugging this in Eq. (2.14), we obtain

where the last equality follows from the representation of dilatations as products of
reflections (see Appendix I, Eq. (AI.6)). This completes the proof of (iv) provided
Eq. (2.15) can be verified.

It follows from Eq. (2.12) and functional calculus that if A G SU(1; 1) and
I = A'S+CS1 then

πo(A)Δ%+πo(Af = Δf , Vt e R. (2.16)

/-iπ/4 Q \

Now, let A := R(—1/4) = ί iπ,4 j . One checks by direct computation
\ 0 e J

that A - S+ = {-i\ i) and that

I{_iιiyA-ι=AΊ{_i;iy (2.17)

From Eq. (2.16) it follows that

πo(A)Δ«+πo(Af = Δ*.s+ = Δ ^ , (2.18)

and hence

= πo(A)J(_ι.i)Δ}t_i,τ)ττo(A)

= πo(A)Δlίi.i)πo(A-ι)J(_i.t), (2.19)

where we used Eqs. (2.17) and (2.18) twice.
But

= A-i:D
— Λ~ιt

where we used Eq. (2.13) to obtain the last equality. Inserting the last equation in
(2.19) we obtain

J(-i;i)ZΛS+ — ̂ 5 + J(-i;i) '

and this completes the proof of the theorem.

The result obtained in the previous theorem can be summarized by saying that if
the spectrum of the generator of translations of the representation τr0 is positive then
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the one-parameter group of dilatations πo(D(t)) coincides with the modular group of
the algebra ^ — ̂ S(S+) with respect to Ω. Another simple application of the results
of Borchers [34] shows that the converse is also true:

Theorem 2.20. Let {3$\ π o ; Λ>\ Ω} satisfy all properties of Definition 2.5, except
for the spectrum condition and let {^C0}/ csi be the corresponding conformal net.
If the one-parameter subgroup of dilatations coincides with the modular group of the
algebra ^ ( £ + ) with respect to the vacuum state then the generator of translations has
positive spectrum.

Proof. Let V(p) := πo(T(p)) denote the one-parameter group of translations on ,β&.
Since by assumption Διg+ — τro(D(t)), the following commutation relation holds
between Δ^ and V(p)\

ΐ* = πo(D(t))πo(T(p))πo(D(tΓι)

= τro(T(e-2πV)), Vt,peR. (2.20)

Let now p be positive and fixed. Since ad V(p) maps ^ ( £ + ) into ^ ( £ + ) , Lemma
II.3 of ref. [34] implies that the function

has an analytic extension to the strip 5 ( - l / 2 ; 0) = {z e C | -1/2 < Imz < 0} as

an operator-valued function and that furthermore, on £(—1/2, 0), the bound

holds uniformly in z. From Eq. (2.20) we conclude that the function

t H-> V(e~2πtp)

has an analytic extension to complex t's contained in the strip S(—1/2; 0) and the
bound

holds for all z e £(—1/2; 0). Going over to the variable y := e~2πt p we see that
the domain £(—1/2; 0) is transformed into

so that, as a function of y,

y »-• V(y)

has an analytic extension into the upper half-plane C + , and on C + it satisfies the
bound \\V(w)\\ < 1.

Let
+00

V(y)= J eipydE(j>)
— OO
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be the spectral decomposition of V(y). Assume that E(p0) φ 0 for some p0 < 0. Then
there exists a vector ψ G J$ί such that E(po)ψ = ψ and | |^ | | = 1. If w = y + ix,
x > 0 we can estimate the norm of V(w)ψ as follows:

\\V(w)ψ\\2 = J

f d\\E(p)ψ\\2 >

If x —> oo the right-hand side of this inequality can be made arbitrarily large,
contradicting the bound ||T^(w)|| < 1. Hence E(p) = 0, Vp < 0, that is, the spectrum
of the generator of translations is contained in {0} U l + . This completes the proof of
the theorem.

II.3. Local Internal Symmetries of Vacuum Sectors

In this section, we complete our description of the relation between the modular
structure of the local algebras in the vacuum sector of a conformal field theory and
the representation τr0 of the Moebius group by constructing the modular conjugation
Js from the representation π 0 of SU(\ 1) and by identifying the group of local
internal symmetries of the net. The proofs of the following results, which are of a
technical nature, are relegated to Appendix II.

Definition 2.21. Let \ββ\ πo; ,A\ Ω} be the vacuum sector of a conformal field
theory,
(i) The group Ŝ  C ?ό(J&) of unitaries such that

UΛ(I)U* = -ΛI), V / C 5 1 , UΩ = Ω,

is called the group of local internal symmetries of the vacuum sector.5

(ii) Let π 0 be the corepresentation of SU{\ 1)± constructed in Theorem 2.19. We
set

& := {U e J9(^)\Uτto(A) - πo(A)U, VA e SU(l 1)±; and UΩ = Ω}. (2.21)

Lemma 2.22. Let {J%?; πo; ,τS; Ω} be the vacuum sector of a conformal field theory.

Then & C W.

Proof. See Appendix II.

Definition 2.23. Let { ^ τr0; ,/&\ Ω}9 be the vacuum sector of a conformal field

theory. For U G & we define

^U(I) := {A e Λ(I)\U AU* e ^(1)} , VI CS1.

The net {^u(I)}ics^ i s a local conformal net contained in

The following criteria identifies elements of & in 3 .̂

This group was introduced in ref. [56], see also [37]
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Lemma 2.24. Let {3&\ τr0; ~&\ Ω} be the vacuum sector of a conformal field theory.
Then U G S? if and only if U G S? and the vacuum vector Ω is cyclic for the von
Neumann algebra Jθ := {UIcSiΛ

u(I)}" generated by the net u

Proof See Appendix II.

Definition 2.25. Let {$$£ π^; ̂  Ω^, i = a, b, be two vacuum sectors of con-
formal field theories. These two sectors are said to be equivalent if there exists an
invertible isometry V : S$a ι-> 5$h such that

Vπ%(.) = πb

0(.)V,

Definition 2.26. Let S¥ϊχ, 5$2 be two Hubert spaces, e = {e l5 . . . e n , n =
an orthonormal basis in ^ and A an antilinear operator in 3@v Each vector
y? G ̂ j 0 ^ 2 c a n b e written uniquely as

(i) The conjugation J(e) associated to the basis e on 3$x is the unique antilinear
extension of

J{e)ei = ei i = 1,... dim 3%λ .

(ii) A linear operator B G 3B{3@^) is said to be real with respect to the basis e of
J^,if

J(e)BJ(e) = B.

(iii) The antilinear extension of A with respect to e on Mγ ®β%2 ̂
s t n e unique antilinear

map A(e) defined by

A(e)φ '.= > e ®A<p , φ = > e 0cz? .

i=\ i=\

Lemma 2.27. Let (π; 3$^) be an irreducible representation of SU(l 1) belonging
to the holomorphίc discrete series. Then π extends uniquely to an irreducible corepre-
sentation of SU{\ 1)±. That is, there exists on j ^ π a (up to a phase factor) unique
conjugation J π such that

4 = 1 , Jπτr(A) Jπ = π(A), WA G SΊ7(1 1) (2.22)

holds.

Proof. See Appendix II.

Theorem 2.28. (Structure of the vacuum sector of a conformal field theory.) Let
{3$\ π o ; ̂ f&\ Ω} be the vacuum sector of a conformal field theory. Then {3%\ π o ; ^ ;
Ω} is equivalent to a vacuum sector {3%'\π'ς)\Λ?\ Ω'} having the following proper-
ties:

oo

(i) 3@ = βgΩ, Θ φ ( ^ (8) ̂ π i ) , where 3%Ω, := {CΩ1}, d i m ϋ ί = i.
2 = 1
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(ϋ) TΓQ =H1(g)π1Θll2Θ7Γ2Θ Θ l l o o 0 TΓ00, where the πz's are disjoint, multiplicity-
free direct sums of holomorphic discrete series representations 6 of SU(\\ I) on 3$^%

7ίι = 0 ? r ι ' α , and each τr 2 ' a is irreducible.
Oί

(iii) The modular conjugation J's of\Λ'(S+) = Λ-? is given by

J's+ = KUs+) = Λ i ( e l ) ® ^2(e 2 ) θ θ Jπoo(e°°), (2.23)

where e1 = {e|; e^ . .e*} are orthonormal bases of M{, i = 1, 2 , . . . oo, and

a. 77^ conjugations J^i, a are those constructed in Lemma 2.27.

(iv) If an operator U G ^ό{3^') is a local internal symmetry of the vacuum sector
T ; π'o; A'; Ω'}, then

with each Ui unitary in 3r€i and real with respect to the orthonormal basis e1 o
i = 1 , . . . oo.

Proof See Appendix II.

In view of the previous results, we are led to believe that under appropriate
assumptions, some version of the following conjecture is true.

Conjecture 2.29.
(i) Given a local, isotone and dual net / —> J&{ϊ) of hyperfinite type IIIγ factors in

J$(M) indexed by intervals of the circle and a vector Ω cyclic and separating for each
.4(7), I c Sι, one can construct, for each interval /, the modular group Δf and the
modular conjugation J 7 of the algebra ,A(I). These correspond to the one-parameter
groups of Moebius transformations leaving the end points of the interval I fixed and
to the inversion about the end points of / (see Theorem 2.19). It should be possible
to verify that these one-parameter groups and inversions form a representation of
SU(\ 1)± under which the net transforms covariantly. To simplify the task, one
could assume the existence of the one-parameter group of rotations satisfying the
spectrum condition.
(ii) Given the vacuum sector of a conformal field theory {M\ π o ; yό\ Ω}, one

expects an algebraic version of the Lϋscher-Mack theorem [1] to be true. Formally,
it is possible to define an energy-momentum tensor T(z) as an h = 2 coefficient of
the expansion

at(A) = (β; AΩ)ί + ] Γ Γhφf(z)(t -> oo),

where A is a suitable local observable and at(A) := adπo(K(t))(A) for the one-
parameter group K(t) of PSU{\ 1) which contracts intervals to the point z E Sι

(for example, K(t) = D(t) for z = 1). The Fourier coefficients of T(z) should then
satisfy the commutation relations of the Virasoro algebra.
(iii) Another possible way of deriving the Luscher-Mack theorem is to assume the
theory to be super symmetric in the following sense. Let 3$ be a separable Hubert
space, 7r0 a unitary representation of the Moebius group on 3$ leaving a vector Ω

possibly trivial
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invariant, and j& a von Neumann algebra transforming properly under π 0 . We use the
standard notation, L_1? Lo = K, L + 1 , for the infinitesimal generators of the Moebius
group. We now assume the existence of an operator Go on 3$ such that

— r u n — r'*

and of a unitary involution Γ such that

ΓA = AΓ, VA G ^ ,

0 = -G0Γ, ΓLτ = L%Γ, i = 0, - 1 , 1.

This implies that ^ is the direct sum of the eigenspaces of Γ,

and that

Z&Ω C.

By defining inductively

1 1
2 • - 2 i ' i J + - 2 • - 2 l 5 - 1 + ' • " '

G X T Γ^ Λ Γ* OΓΓ / ^ 1

n ' - 2^ n ' O- ' ~ n ' ~ 2 ί j L - ^ ' ^OJ J

where [ , ] + denotes the anticommutator, we expect to obtain from L_l9 Lo, Lx and
Go a Ramond algebra specified by the commutation relations

> LJ = (rn- n ) L m + n + ̂ rn{m2 - l ]<5 m + n ) 0 ,

[Lπι,Gn]=(-m-n)Grn+n,
1

[ G m , G J + = 2 L m + n + - ( m 2 -

having the correct grading

ΓT — T Γ i £= Ί ΓC1 — C Γ i
l ±J^ — i i ^- i i — i '
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III. The Conformal Nets Associated to Positive-Energy Representations
of Loop Groups

As an application of the results presented in Chap. II, we construct conformal nets
in positive-energy representations of certain loop groups. Some of these nets will be
shown to be nets in the vacuum sector of a conformal field theory in the sense of
Chap. II. The analysis of their superselection structure will be sketched in the next
chapter. Algebraic quantum field theories of this kind were already considered by
Buchholz, Mack and Todorov [30] for the loop group LT of the one-dimensional
torus T, in order to classify quantum field theories having the [/(l)-current algebra
as a common germ. Indeed, some of the main ingredients of our construction were
already mentioned in [30]. Results similar to those presented here have also been
announced by Wassermann [29].

In the following sections, we gather all the necessary ingredients scattered through
the literature.

III.l. Simple, Simply Laced Lie Algebras and Groups

Let Go be a simple, simply connected and simply laced compact Lie group. The Lie
algebra, Sξ, of Go belongs to the A, D or E series. Let & be the complexification of
.?Q. Fix a Cartan subalgebra I ] C ^ and let Δ denote the roots of ί) on 2 .̂ We then
have the direct sum decomposition

where 3ζ, denote the one-dimensional root spaces. Choose a set of positive roots,
Δ+, in Δ, let π = {α 1 ? . . . au I = dim ί)} be the set of simple roots and let θ be
the highest root in Δ+. Choose a non-degenerate, invariant symmetric bilinear form
( | ) on 5^, normalized as follows: the restriction of ( | ) to fj is non-degenerate, hence
induces an isomorphism v : ί) —+ ί)* and a non-degenerate bilinear form ( | ) on ϊ)*.
We require that

Then (a\a) = 2, for any root a in Δ, since all roots of a simply laced Lie algebra
are long. Given a root a, let ha := v~ι(a) G f) be the corresponding coroot. We have
that

/ i

- Σ -
where the integers aτ are positive and are given in Table I below. The number

i

g := 1 + Σ ai *s the dual Coxeter number of 3^.
2 = 1

Let A% e f)*, i = 1,... /, be the fundamental weights of & defined by Λi(ha ) =

<52J,j = l , . . . L Define ρ : = Σ 4
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Table I.

2 3 4 5 6 4 2

2 { - 2

12

18

30

If we pick a Chevalley basis {ea}aeΔ U {ha , i — 1,... /} of & then the real span
of

{iha\ ea - e_a i(ea + e_a)}aeΔ

is a compact real form 2 .̂ of S? which is isomoφhic to ^ . We will identify ^ with
Ŝ , in the following. Let τ be the conjugation of W defined by the compact real form
^k and set x* := —r(x) for x G tF. Then

^ __ r χ £ ^ Ί > £ * — — χ |

Furthermore, (x|?/*) is a positive Hermitian form on &. Later on, we will need a pair
of dual bases of ^ , i.e., two bases {uΛ and \uJ\ of ^ such that (uλu3) = δό-.

///.2. 77ze Aĵ /2̂  L/β Algebra W Associated with S^

Let C[t; t~ι] be the algebra of Laurent polynomials in t. The residue of a Laurent
polynomial / — ^2 ckt

k (where all but a finite number of ck are zero) is defined by
kez

Res/ = c_v Res is a linear functional on C[t; t~ι] characterized by the properties

Rest" 1 = 1, R e s ^ =
at

If we define

then S? is a Lie algebra under the obvious bracket operation. S? can be viewed as a
subalgebra of the rational maps from C x to S?. The evaluation of x G ^ on Sι is
then obtained by replacing £ by eιQ. We will often use the convenient notation x(n)
for x 0 Γ , x G ̂  and identify ^ with S^ 0 1 in ^ .

Let Ω be the bilinear form on 3? defined by
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where ( | ) is the invariant symmetric bilinear form of Sect. III. 1. Thus, Ω(x(n);
y(m)) = nδn _m(x\y) for x, y G &. One easily checks that Ω is a two-cocycle on

.^, and we denote by S7 the corresponding central extension of 8?:

As a vector space, we take S^ = ^ θ C c with the commutation relations

for /, g G &. Here [, ] 0 denotes the bracket in S?, and c is central. For x, y e .?,
we have

[z(ra), y(n)] = [x; y](m + ή) + m5m > _ n (x | y) c.

& is the affine Lie algebra associated to &.

The map x \-> x*, x G S ,̂ extends to a conjugate linear anti-automorphism of 2^
by defining c* = c and x(n)* = #*(—n), x G ̂ , n G Z.

Let ^ := {x G ^ | x * = —x}, ^ is a real form of 3^, the so-called "compact
form."

III.3. The Loop Group LG0 and its Central Extension LG0

We denote by LG0 the group of smooth maps / : Sι —• Go under pointwise
multiplication. LG0 can be given the structure of a Frechet Lie group [57]. The
Lie algebra of LG0 consists of smooth maps / : 5'1 —> ̂ , with the bracket operation
induced by Ŝ j We denote by LSζpo1 the subalgebra of L ^ consisting of loops having
finite Fourier series.

We define a skew-symmetric, bilinear form ω on L3^ by

0

where ( | ) is the invariant symmetric bilinear form of Sect. III. 1. One checks that

ω is a two-cocycle on L ^ and that the central extension L$?o := L2^po 0 R ic

defined by this cocycle coincides with S?k when evaluated on S 1. Hence S? is the

complexified Lie algebra of LtyQ .

The corresponding central extension LS^0 of LS% given by the cocycle ω lifts [58]
to a central extension of the loop group LG0:

However, since LG 0 is a non-trivial C/(l)-bundle over LG0, this extension cannot be

globally defined by a continuous Lie group cocycle. A convenient description of LG0

has been given by Mickelsson [59, 60] by considering LG0 as a quotient of a larger,
trivial [/(l)-bundle.

Let D = { Z G C I \z\ < l }be the unit disc in C and D£?o the group of smooth
maps from D into Go with radial derivative vanishing to all orders at the boundary.
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Denote by 5^ the normal subgroup of DG0 consisting of maps / : D —> Go such
that / | s i = e, where e e GQ denotes the unit element.

We define a real-valued two-cocycle 7 : DG0 x DG0 —• R by

D

D

where ( | ) is the invariant symmetric bilinear form of Sect. III.l and a group extension
of DG0 by U{\) using the multiplication rule

(/; λ) (g; μ) = (/ g\ λ/iexp2τrry(/; g)).

n 0 x f/(l) as follows. Let g E 5^; since ρ|5i Ξ e we can think
of g as a map from S2 to Go by identifying the boundary Sι of D with the north
pole of S2. Let § denote an extension of g to B, the unit ball in M? (which exists
since τr2(G0) = 0) and define

C(S) = ^
B

One checks that C(g) depends on the chosen extension g only modulo Z. Hence the
map

ψ:S?n^DGox U(\)

g -^ (g; exp 2πίC(g))

is well-defined and can be shown to be a homomorphism [59, 60]. The image φ(S^) in

DG0 x U(l) is readily seen to be a normal subgroup, and LG0 := ( ^ G o x U(l))/φ(^n)
is a circle bundle over the base space LG0. The projection is given by

V ' LG0 -+ LG0

[(/; A)] -+ / | 5 i .

The center of LG0 is represented by the pairs (1, λ) e DG0 x U{\). It acts transitively

on each fiber, and so LG0 is a central extension of LG0 by U(X).
The cocycle η{ •; ) induces a Lie algebra cocycle c( •; ) for the Lie algebra

of DG0 which is easily computed. Let f,geDS%, then

; eS9) = ~ ί(df \ dg)
4 π i

4πz J

so that c( •; ) coincides with ω( •; )•
Finally, let us note that the (Frechet) Lie group of orientation preserving diffeo-

morphisms of the circle Difff(5'1) acts in an obvious way on LG0 and that this action

lifts to a covering action of LG0 [42]. A representation (π; 3@^) of LG0 is called



Operator Algebras and Conformal Field Theory 595

a positive-energy representation if the one-parameter group of rotations acts contin-

uously on 3%Έ by unitary operators which implement the rotation automoφhisms of

LG0 and if the generator Lo of rotations has positive spectrum.

IllΆ. The Local Structure of LG0 and LG0

The description of LG0 given in Sect. III.3 allows us to construct local normal

subgroups of LG0 and of LG0.
Let / : S{ —• Go be an element of LG0. Denote by supp/ the smallest closed

subset of Sι such that / lsi\supp/— e Define for each open interval / in Sι

Λ(D' = {f e LG0\ supp f c 1}

and

Clearly, ,A{1{) C ^ ( 7 2 ) if 7! C 72. The following lemma is elementary.

Lemma 3.1. Let f e *A{Iγ) and g e .A(I2). IfIιΠl2 = ® then f g = g / in LG0.

Proof Let / := p(f) and g := p(g), so that supp/ C I{ and supp^ C 72. The

construction of LG0 given above implies that a representative of / in DG0 x U{\)

is of the form (/; λ), where / may be constructed from / as follows. Denote by Cj

the open cake slice of D having Iγ and 0 £ D on its boundary,

and let C'Iχ be the complement of Cj in D. Extend / to a map f on D such that

/ \cι = e. Such an extension exists, since supp/ c Ix and πλ(G0) = 0. Proceed in

the same way for g. Clearly, C 7 ΠCj = 0 since 7 ^ / 2 = 0. This implies that

and

7(/; 5) = 0

which in turn means that

/; λ)

holds in T^GQ X ί/(l), so that f - g = g - f in LG0. This completes the proof of the
lemma.
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III.5. The Extension of & by the Virasoro Algebra

Let d = C[t; t~ι]-r- be a subalgebra of the Lie algebra of rational vector fields on C.

There is a natural action of d as derivations of S^ which lifts to 3^ by acting trivially

on the central element c. In terms of the basis dn = ~^n + 1~r> n £ Z for <9, one has
CUL

dnx(m) = —mx(m + n), dnc = 0

for n, m G Z, G ̂ . The commutation relations of d are

K , dm] = (n - m)dn+rn , n, m G Z .

The algebra d admits an (essentially unique) non-trivial two-cocycle ω defined by

ω(dn; dm) = ^ ( n 3 - n)6n^ _ m , n, m G Z .

The corresponding central extension 9,

is called the Virasoro algebra. As a vector space, 9 = d Θ C n with « central. The
Lie bracket is determined by

K > dml = (n - m ) d m + n + ^ ( n 3 - n) δUj _mκ.

The action of d on SP may be extended to an action of d by letting K act trivially.
With this action, we form the semi-direct product

The Hermitian conjugation χ ι - > x * , x G ^ i s extended to ΰ by setting

*

and this extension is compatible with the action of 3 on W. Furthermore, the real
subalgebra

dk = {d G d I d* = -d}

coincides with real vector fields on Sι, by evaluating on Sι. Hence it is a subalgebra
of the Lie algebra of D i f + 1

Finally, the extension

of S? by the degree derivation d : = —d0,

dx(n) — nx(n)

will be convenient to describe the representation theory of &.
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HI.6. The Root Space Decomposition of &e; Dominant Integral Weights

The root space decomposition of &e relative to the abelian subalgebra ψ =

ί j θ C c θ C d can be described as follows. If λ G P)*, extend λ to \f by setting

λ(c) = λ(d) = 0. Define δ G (ψf by

δ(ί)) = 0, ί(c) = 0, δ(d)=l.

Since [h + d; xα(n)] = (α(/ι) + n)xα(n) for α G Z\, x α G ^ and h G fj, it is clear

that the roots of 5^e with respect to ψ are

4 = {£;<$ + a I A; G Z, α G Z\} U {kδ \ k G Z - {0}}

and the root spaces are

(S^WnS = C e α (n), ( S n n , - {ft(n) | fo G ί)} .

Set
A+ = {a-hnδ \a e Δ, n>0}U{nδ \n>0}U Δ+,

so that Δ = Δ+ U (—Δ+). The set of simple roots is π = {α0, α 1 ? . . . CK }̂, where
α l 5 . . . αz are the simple roots of SP and ao = δ — θ. The corresponding coroots are

Define the fundamental weights ΛQ,... AL G (^e)* by

Note that the restriction of A{, ... λι to ί) are the fundamental weights for & and we
have

Ai — Ai + α ^ o Ϊ = 1,.. ϊ

z
Put ^ := Σ i , ; then £ = # + gλ0.

1 ι

Let P := X] Z i be ίA^ w /̂g/zί /αm'cβ of Sfe and P + := Σ Z + i be the set

of dominant integral weights. Given A G P + , the positive number τί(c) is called ί/ẑ

/̂ v̂ / of A. Note that
i (c) = α , i = l , . . . / .

Given m G Z + , denote by P J m ) the set of A G P+ of level m. This is a finite set for

each m G Z + and P | 0 ) = 0.

We extend the bilinear form ( | •) on ί)* to a symmetric bilinear form on (^β)* by

(ί)* I O + C i 0 ) = 0 , (δ\δ) = (Ao I i 0 ) = 0 , (δ\λo)=l.

N o t i c e that i ( c ) = (A \ δ).



598 F. Gabbiani and J. Frόhlich

We will also need the following triangular decomposition of 5^e:

g?e = fι+ Θ f)e θ n_ ,

where

-aeΔ+

III. 7. Properties of Irreducible Integrable Highest Weight Modules of 3?e

Let A G P+ be a dominant integral weight of S^e. A S?e -module (V; π) is called a

highest weight module with highest weight /ϊ, if there exists a vector i>^ G V such

that
π(n + ) vΛ = 0 , τr(/ι) υΛ = A(h) vΛ for heψ ,

and

where U(^e) denotes the enveloping algebra of 2P\ There exists, up to isomorphism,

a unique irreducible highest weight module (L(A), π£) with highest weight A G P + .

The module L(^i) has the following properties [47, 61].

(i) There exists on L(A) a positive definite Hermitian form ( | •) such that

(πΛ(x)u \υ) = (u\ πΛ(x*)υ) , Vu, υ e L(A), x G f .

Such a Hermitian form is said to be contravariant with respect to the *-conjugation

of 5P\ In particular, it follows from contravariance that the elements of 5?k are

represented by skew-Hermitian operators on L(A).

(ii) The action of S? on L(A) can be extended to the semidirect product of S^ and

d by the Sugawara construction:

where {w }̂ and {uJ} are dual bases of S ,̂ 7?z is the level of Λ, g is the dual Coxeter
number of Ŝ 7 and the normal ordering symbol: u(s)v(r) : stands for u(s)v(r) if s < r
and for v(r)u(s) if s > r. The Hermitian form ( j •) is contravariant for the extended
representation and the central element K of d is represented by

m dim S?
Ί

(jnΛ-g)

The constant σ is called the conformal anomaly. Furthermore,

(A + 2ρ I A
Λ 2{m + g) '

so that the eigenvalues of Lo on L(A) are given by ft^ + Z + . The constant ft^ is
called the ίrαc^ anomaly.
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(iii) Denote by 3$& := L(Λ) the Hubert space completion of L(Λ) with respect to

the hermitian form {• | •). The representation π^ restricted to Wk integrates to a

strongly continuous, irreducible, unitary representation of LG0 on 3$^. Furthermore
the representation π^ restricted to dk integrates to a strongly continuous, projective

representation of Diff^(Sι) on 3% which implements the action of Difff(S'1) on LGQ.
(iv) The operator Lo is the generator of rotations of the circle on 3%^ e~PL° is trace
class for β > 0 and satisfies the following asymptotic estimate [47, 62] as β —> 0,
β>0:

tr^ Λ e'βL° ~ a(Λ)exp(-βσ/24)exp(π2σ/6β),

where a(A) is a constant depending only on i G P , .

III.8. Vacuum Representations of LG0; the Basic Representation

Let A G P + , .Λ be the restriction of A to ί) and (π^; J^ j) the corresponding

representation of LG 0 obtained in Sect. III.7. These representations form a complete

list of irreducible positive-energy representations of LG0.

An irreducible vacuum representation of LG0 is an irreducible, positive-energy
representation having a unique lowest eigenvalue vector for Lo invariant under the
whole Moebius subgroup of Diff f(51). Such representations are easily determined:
notice that Go can be identified with the subgroup of constant loops in LG0. Constant
loops are invariant under rigid rotations of the circle Sι and consequently the unitary
representation π^ of Go on 3$χ is reduced by the eigenspaces of Lo [58]. In particular,
the lowest eigenspace of Lo (i.e., the eigenspace to the eigenvalue hj() carries the
irreducible representation of Go corresponding to the dominant weight A on ί). This
implies that Lo has a unique lowest eigenvalue vector if and only if A = 0 on ί),
that is, if and only if A = mΛ0, hj^ = 0. One checks easily that υj[ is annihilated by
L±ι in this case, that is vj± is invariant under the Moebius subgroup of Diff+(S'1).
Hence, for each level, there is a unique irreducible vacuum representation of LG0,
determined by the dominant integral weight mλ0, m e Z + .

The level one vacuum representation is called the basic representation of LG0.
If Go is simply connected and simply laced, every irreducible positive-energy

representation of LG0 can be obtained from the basic representation as follows (see
[42], Theorem 9.3.9).

Let Z be the center of Go and g G Z. Pick any smooth path ag : R —> GQ

such that α(0) = e, α(2τr) = g, a(θ + 2π) = g a(θ). If, η G LG0, we denote by
ηa the loop obtained by conjugating with ag; the map η —> ηa defines an outer

automoφhism of LG0. The set of representations α*τr0 obtained by composing τr0

with such automorphisms are precisely the irreducible, level-one representations of

LG0.
Furthermore, any representation of level m is a direct summand of i^TΓj, where

TΓJ is a level one representation of LG 0, im : Sι —> 5 1 is any map of degree m and
z^πj denotes the representation obtained by composing πγ with im.
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III.9. Local Algebras in Irreducible Representation of LG0

Let A G P+ and (π^; 3$^) be the corresponding irreducible representation of LG0.
Define a local net {^ίC0}/ c s i on 3$^ by

The following result is an easy consequence of the preceding discussion.

Theorem 3.2. (i) For ever A G P+, the collection {^j[(I)}icsι ^s a conformal net
onβgλ.

(ii) Let A — mA0, m G Z + . The net {^VΪCΌI/CS 1 ^ t n e n e t °ftne vacuum sector of a
conformal field theory in the sense of Chap. II. In particular, this net satisfies duality,
and the local algebras ^χ(I) are hyperfinite type IIIγ factors.

Proof. Ad (i). ^£^(1) is the weak closure of π ^ ( ^ ( / ) ) , so that isotony and locality

follow from the corresponding properties of the groups ~&(I) derived in Sect. III.4

(see Lemma 3.1).

From Sect. III.7 (iii), we know that 3&j^ carries as strongly continuous, projective

representation of the Moebius group under which π^(^S(I)) transforms covariantly

for every /, so that covariance of the net follows.
Ad (ii). We know from Sect. III.8 that 3$^ with A = mA0, has a unique

vector invariant under the Moebius group and that the spectrum of Lo is positive
on 3@fc The vacuum vector vχ of 3$j{ is by definition cyclic for the von Neumann

algebra 21 = J | J Λ>χ(J)\ . Hence all properties of Definition 2.5 are fulfilled.
I /cs 1 J

Furthermore, the asymptotic behaviour of t r ^ e~f3L° given in Sect. III.7 (iv) implies

that Theorem 2.13 is applicable. Haag duality follows from Theorem 2.19. This

completes the proof of the theorem.

As a matter of fact, the theorem of Pressley and Segal presented in Sect. III. 8 (see

ref. [42], Theorem 9.3.9) implies that local algebras are hyperfinite type III{ factors

in any irreducible positive-energy representation of LG0.

Theorem 3.3. For every A G P+ and I C Sλ, ^Sj^(J) is isomorphic to the hyperfinite
type IIIX factor.

Proof. If A is a level one dominant integral weight, then π^ = α*τr0, where ag is a

smooth path from e to g G Z along S 1. Choose ag in such a way that ag | 7 = e. It

then follows that π^ and α*π^ coincide on ^ ( / ) . Hence ^4χ(I) — ̂ χ (/), and,
since all local algebras are unitarily equivalent, by Moebius covariance, this completes
the proof in the level one case.

Next, let π^ be a level m representation. We know that πχ is a direct summand
of i^TΓj, where πλ is a level one representation and im : Sι —> Sι has degree m.

Let E G i^πι(LG0Y be the projection on πΛ. Then ^ ( / ) = { C ^ C ^ C O ) } ^

(see [63], Chapt. I, §2, Prop. 1). Choose im such that im \τ = id | 7 so that

{i^n^^il))}" = {TΓ!(./#(/))}" is the hyperfinite type IIIX factor, since πx is of

level one. The projection E belongs to { ^ T Γ J C ^ I ) ) } ' , that is to {πx(^i{I))}f. Since

S)' is a factor, the central support of E is t and the induction of { π \ S
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on {π{(^(I))Y^ is an isomorphism (see [63], Chapt. I, § 2, Prop. 2) and the theorem
is proved.

This completes our discussion of the properties of conformal nets associated to
positive-energy representations of loop groups. The corresponding algebraic quantum
field theories and their superselection structure will be discussed in next chapter.

For the sake of completeness, we state without further details the analogue of
Theorem 3.2 for representations of the Virasoro algebra.

Theorem 3.4. Let L((h; c)) be an irreducible unitary positive-energy vacuum repre-
sentation of the Virasoro algebra, that is,

(i) c = 1 —, m = 3, 4, . . . , h — 0, or
m(m + 1)

(ii) c > 1, h = 0.
Then the local algebras constructed from the corresponding projective representa-

tion of Diff^(Sι) are hyperίinite type IIIX factors, and the net determined by these
local algebras is dual.

The proof of this theorem (which is very similar to the one of Theorem 3.2 given
in this chapter) relies on results of Goodman and Wallach [78] on the integrability
of positive-energy unitary representations of the Virasoro algebra and from explicit
formulas for the characters of these representations [79].

IV. Representation Theory of Conformal Nets

IV.1 Definitions, Basic Properties

Let {3?\ τr0; L/€; 42} be the vacuum sector of a conformal field theory fulfilling all
the properties specified in Chap. II.

In this chapter we use the following conventions:

- PSUiU 1) denotes the universal covering group of the Moebius group PSUiU 1).

- Elements of PSUiU 1) are written as small latin letters with tildes: #, h, gv

etc. . . If p : PSUiU 1) —>• PSUiU 1) is the canonical projection then the image

pig) e PSUiU 1) of g e PSUiU 1) is denoted by the same letter, without tilde:

PiS) = 9-
- We denote by π ^ (instead of π0) the unitary representation of the Moebius group
on the vacuum sector. By πM we denote other projective, unitary representations of
the Moebius group (i.e., unitary representations of PSUiU 1)).
- We define, for g e PSUiU 1),

agiA):=

WL G

The conformal net ^ 0 := {A(/)} / c 5i constructed in Chap. II is a representation
independent object characterized by

(i) the fact that each local algebra .Ail) is isomorphic to the unique hyperfinite type
IIIX factor;
(ii) the inclusions ,.Ail) C ,AiJ) whenever I C J, for open, non-dense intervals of
S1; ,AiI)Cιy4iJy if JC J';
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(iii) Moebius covariance: for g G PSU(l; 1), ag defines an automorphism of the net

^ 0 , i.e.,

holds for all intervals I c Sι and all g G PSU(1; 1).

This chapter is devoted to the study of the representation theory of conformal nets.

Definition 4.1. A representation π of the conformal net ̂ 0 on the separable Hubert
space f̂π is a consistent family π = {τrI}IcSι of representations of the local algebras
{y^C0}jcsi which is Moebius covariant and satisfies the spectrum condition, that
is,

(i) if / C J then TΓJ | y^j)= π 7 (consistence).

(ii) There exists a unitary representation τrM of PSU(l; 1) on β&π (i.e., a projective
representation of PSU{\\ 1)) such that

πM(g)πI(A)πM(gf^πg.I(ag(A))

holds, for all A G ̂ ( J ) , g G PSU{\\ 1) (Moebius covariance).
(iii) The spectrum of the infinitesimal generator of rotations on β$π is positive

(spectrum condition).

Such representations always respect the local structure of ^ 0 .

Lemma 4.2. Let π be a representation of^0. If I C J'', then

C f

Proof Let / m J''. Then there exists an interval K D IUJ such that, by consistence,
we have, for A G Λ(I) and B G ̂ ( J),

^(A)nj(B) = πκ(A)πκ(B)

= πκ(AB) = πκ(BA)

= τrκ(B)πκ(A) = π

Hence π 7 ( ^ ( / ) ) C πj(.A(J))', for all / (s J'. But because of Moebius cova-
riance [31],

and this completes the proof of the lemma.

Definition 4.3. (i) A representation π of ̂ 0 is irreducible if the von Neumann algebra

IcSιY

is equal to C i ^ otherwise π is reducible.
(ii) Two representations π and π are unitarily equivalent if there exists a unitary

operator [/ : Mπ —> ^ . such that

jtI(-)U = UπI(') V / C 5 1 .

(iii) An equivalence class of representations of the conformal net ^ 0 is called a
sector. If π is a representation of ^ 0 , we denote the corresponding sector by [TΓ].

The following observation was first made by Buchholz, Mack and Todorov [30].
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Lemma 4.4. Any representation π of,/S0 is locally unitarily equivalent to the identity
representation, that is, for each interval I C Sι,

7Γ I - = i d I

where the symbol " = " means unitary equivalence.

In our case, this lemma follows from the fact that the local algebras are hyperfinite
type 777j factors. This motivates the following definition.

Definition 4.5. A representation p = {pj}fCsi °f t n e conformal net Lτ£0 on the
vacuum Hubert space 3% is said to be localized in the interval 70 if on the complement,
7^,of70

H = i d 'ό

holds.

As an immediate consequence of Lemma 4.4 we obtain the following result.

Lemma 4.6. If[π] is a sector of representations of ,/&§, then, for each interval Io C Sι,
there exists a representation p G [π] localized in 70.

Proof. Since, by Lemm;

U : M —> M^ such that

Proof. Since, by Lemma 4.4, π7/ = id7/, we can choose a bijective isometry

^) = UA \/Ae φ,

and define pj( ) := U*πj(-)U, V7 C Sι. Clearly, p is a representation in [π] localized
in /0, by construction.

Let p{, p2 G [π] be localized in I{, I2 respectively. If / is an interval containing
I{ and /2, then duality and the localization properties of pλ, p2 imply that any unitary
operator Γp intertwining p{ and p2,

tJ(A), VJCS1, Ae^(J)

belongs to ,/&(I). Explicit examples of such operators are the cocycles of the Moebius
group constructed below. For notational convenience, we will also write the preceding
equation in compact form,

PM)ΓPIP2=ΓP]P2P2(A), WLe.Λ

That is, if an equation holds for all intervals J c S1, we suppress the interval indexing
a collection of representations p — {p/}/C£i

If p is a representation of ,A§ localized in 70, we may define shifted representations
ρg localized in g 70 by

PgJ{A) : = ag o pg-i.jo 0Lg-X{A), VA G Λ ? ( J ) .

It follows from Moebius covariance that p and p are unitarily equivalent for all
g e PSU(V, 1):

pJA) = π^(g)^(g-])p(A)πff(g-'f^(gf, VA e
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where π^1 is the representation of the Moebius group implementing covariance of

p(g) : = π^(g)ττ^1the representation p (Definition 4.1 (ii)). Setting Γp(g) := π^(g)ττ^1\g~ι), we may
rewrite the last equation as

Pg(A)Γp(g) = Γp(g)p(A), VA G Λo , g G PSLf(l; 1) (4.1)

and the intertwiners Γ (g), g G PSU(1; 1) satisfy the cocycle identity,

ΓpiSx ' h) = ^gι{Γp{g2))Γp{gx), V&, § 2 G PSE/(1; 1).

Conversly, given a cocycle Γp(#), g G PSU(l; 1) of the Moebius group which

satisfies Eq. (4.1), one can reconstruct a unitary representation of PSU{\\ 1) which
implements the automorphisms ag of ^ 0 in the representation p (see [14]).

Note that by our definition,

(PgJto = a

92 ° P9ι ° %-l = ^ 2 5 1 ° P ° a(929θ-1 = ?9l9l '

If Γp(g) is the cocycle for p, then applying cê  on both sides of Eq. (4.1) we obtain

(pg)g,(A)agf(Γp(g)) = ag,(Γp(g))pg,(A), WL G ̂ 0 .

Hence the cocycle identity is consistent with

Pgm{A)Γβγ • ~g2) = Γp{gλ • g2)p(A), VA e ^ .

Namely, pgιg2(A) = (Pg2)gι(A) and Γp(g, g2) = ag{{Γp(g2))Γp{gγ) so that

= αffl {Γ^W^g, )p(A)

= Γp(gλ • g2)p(A).

Finally, we remark that if p is localized in /0, then for any interval J D Io one has,
by duality and locality, that

c M.J)
so that pj defines an endomoφhism of ./β(J). In particular, the pair

defines an inclusion of hyperfinite type IIIι factors.

IV.2. Composition of Sectors

Given two sectors [πλ] and [π2] of ,A0, we define a composed sector [τr1δπ2] by
picking two representations px G [TΓJ, p2 G [τr2] localized in some common interval
/0 and defining a composed representation ρ{δρ2 of ^So. There are several possible
ways of defining composition in the present situation [15, 20, 25, 32]. We choose the
alternative which is closest in spirit to reference [20].

We define the representation p{op2 of ,/30 by specifying (p 1δp 2) / for each interval
/ C Sι. Let / be such that there exists J C Sι with / U Io C J . Then /0l ji7, p2, J
define endomorphisms of ,yS(J) D ,/&{ΐ) so that they can be composed. We set

:= Pι,j° P2,J U(/)
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If / is such that (/ U Io)~ covers Sι, we choose Jo C Io such that Jo U / C J for
some interval J C Sι. There exist two representations p l 5 p2 localized in 70 unitarily
equivalent to p 1 ? p2 and intertwiners Γpιβι, ^P2p2 £ ̂ (JQ) s u c n t n a t

We define

Lemma 4.7. The composed representation ρχδp2 is well-defined, i.e., one has that
(i) the definition of(pιop2)I is independent of the particular choices made, VJ C Sι

and
(ii) iflCJ then (Pi°p2)jlyS(I)

Proof Ad (i). First, let pj and p 2 be localized in /0 and let / be such that (/0 U 7)~
does not cover Sι: If / Π 70 = 0, then for any interval J 2 7 U /0 we have

Pi,jL(/) = Pi,/L(/) = i d U / ) ' * = 1,2

so that Pi j ° p2 j(A) = A, Vτ4 G .A(I). So let us assume that / U /0 is an interval. If

J, J are intervals containing / U /0 then the interval J ΠJ also contains / U Io so that

Pl,J ° P2,jU(/) = Pl.JΠJ

= Pi,J°P2,jL(/)

and the definition of (px°p2)i is independent of the particular choice of J 5 I U /0.
Next, let / be such that (/0 U / ) " covers Sι. In the definition of {pχδp2) we chose

ô — Io s m a l l enough such that (70 U / ) ~ does not cover Sι and J D Iou I. Clearly,
by the first part of the proof, pXJ o p 2 j \ ̂ ( / ) is independent of the particular choice

of J 3 70 U /. It remains to check that choosing another interval 70 C Jo such that
(70 U /)~ does not cover Sι and representations px,ρ2 localized in /0 together with
intertwiners Γpιβι, Γpiβi will leave (ριδp2)I unchanged.

We start by showing that choosing ϊ0 C ϊ0 and ρvρ2 localized in ϊ0 does not
change (Pi°p2)j. The two possible definitions of (Pιδp2)j are

a) ft
P2P2

b) (Piδp2)7( ) = Γpλβχpλh{Γp2β2)pXJ o p 2 J ( )βιIo(Γp2β2fΓ*ίβ ,
= Pl,/0(ΓP2/32^l/3iA,J ° P2,j( ' ) Γ p*p 1 Pl,7 0 ( Γ ^2 )

They coincide if and only if

Pi, j o p2?J( ) = a d ί Γ ^ ^ p ^ ^ ί Γ ^ ^ ^ ^ Γ ^ ) ^ ^ ) ^ , 7 o p 2 J ( ). (4.2)

But,

and ^p2p2^P2p2 —'- ̂ p2p2 intertwines p 2 and p 2 ; it is therefore localized in I o .
Furthermore,
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and Γ*ιβιΓpιβj =: Γβχβχ e Λ(I0). Since Io C Io and ϊ0 C J it follows from the
definition of βx that

so that the right-hand side of Eq. (4.2) is given by

j(Γp2p2)(Pi,j ° P2,JX )

β^ji ))

and this proves our assertion.
We can now choose the localization region Io of βl9 β2 so small that it does not

intersect /. It then follows that

Pl,J ° P2,jL(J) = Pi,/ ° P2,/ = i d Vd{l)

and, consequently,

It remains to show that the map &d(Γpιpιβ\1i0(Γp2p2)) i s independent of the choice of

-?o» Pi a n d Pi which fulfill the condition / 0 Π / — 0. Choose /0 such that / 0 Π / = 0 and

p l 5 p 2 localized in /0. There exists then an interval J o C Sι such that Io U /0 C J o,

J o n / = 0. The map

is independent of the particular choice of Io if and only if

^(ΓP%iPi,/o(
Γ^)Pi,/o^,/δ2>ΓPiPi)l^(/) = i d l

But
= ΓP\P\ P^ J^Plfa ΓP2P2^ΓP\ P\

where Γβiβ2 := Γ*2β2Γp2p2 intertwines p 2 and β2 and hence belongs to
Furthermore,

where Γβγ~χ := Γ*iβιΓpιβι e Λ(J0), just as before. Hence,

and since by locality ^ ( Jo) C <A{Ϊ)' this concludes the proof of the assertion and
of (i).

Proof of (ii). There are three cases to be considered,
(a) If / C J and J U Io C J then

(Pι°Pih = P\,J°P2,Ji

(Pι°P2h = Pi,J°P2,J

and the assertion is obvious.
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(b) If / C J and (IUIO)~ covers Sι so that ( J U / 0 ) ~ also covers Sι, then choosing

IQ C /0 such that there exists J D J U ϊ0 and px, ρ2 localized in ϊ0 we have

(Pι°P2)A ) = ^ 1 / 5 I P I , / 0 ( Γ P 2 / 5 2 ) P I , J ° P2,Λ ' ) P I , / O * %

\J ° P2,Λ ' ΪPlJo

the assertion is again immediate.
(c) If / C J, / U /0 C Jχ and (J U / 0 ) ~ covers 5 1 then choose /0 C Jo such that

there exists an interval J2 D /0 U J and /0 Π J = 0. By definition of

{Plop2)j =

for p 1 ? p 2 localized in Io and intertwiners Γ1 ^ between pi and ^ , i = 1,2. But

= ^ 1 , ^ °P2,J 1U/)

and this completes the proof of (ii) and of the lemma.

Lemma 4.8. Let px and p2 be two representations of \Λ§ localized in Io.
(i) The representation pχδp2 of ,τ£Q is localized in any interval Ix 2) /0.

(ii) Let px, p2 be representations of'^0 unitarily equivalent to px, p2 respectively and
localized in a common interval lx. Then

Pι°Pi = PI°P2-

(iii) If moreover, there exists an interval J D I0Ulx and Γp^p^, Γ ^ are intertwiners
between px and px, resp., p2 and p2, then

intertwines pχop2 and pχδp2.
(iv) If px is localized in Iχ C /0, p2 in I2 C /0 and Ix Π I2 = 0 then

Pl°P2 = P2°Pl

(v) The representation pχop2 is Moebius covariant.

Proof Ad (i). Let Ix be any interval strictly containing 70, Ix DD Io. It then follows
that (/( U 70)~ does not cover S 1 so that

for some J D I[ U /0. However, since px and p2 are localized in Io, it follows that

Ad (iii). It is sufficient to consider the case of Ix C /0 and J = /0. We show that
jΓPiδP2,/5iδp2

 G - (̂Λ))> a s defined in (iii), intertwines (ρχδp2)j and (ρχδp2)j, for each

interval I C Sι. There are three possible situations.
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(a) If / U Io C J for some interval J, then / U Io U Ix C J, and hence

)Γpι6P2,pι6β2 = PlJ ° P2j( * )Γ

PιpA^Γ)

(b) If (/ U Jo)~ covers 5 1 but / U /j C J for some interval J, then by definition of
a n d o f

and the claim is immediate.
(c) If (/ U Jo)~ and (/ U /j)" cover 5 1 , pick ^ C Ix such that / U ϊx C J for
some interval J . Let p 1 ? p 2 be unitarily equivalent to βl9 p2 and Γ~χβχ, ^β2β2 be the
corresponding intertwiners. It then follows that Γ p / 5 ' ^p.px intertwines ρi and βi9

i= 1,2.
By definition,

This completes the proof of assertion (iii).

Ad (ii). If Jo U/j is contained in some interval, we are done by (iii). If not, choose
/ such that Jo U / and / U Jj are contained in some intervals, βλ, β2 localized in /
unitarily equivalent to p{, p2- We can then apply assertion (iii) twice to conclude the
proof of (ii).

Ad (iv). We check that (pλ°p2)i = (P2δPi)/ f° r e a c n interval / C Sι. If / U Io is
contained in some interval J C 5 1 , then the proof follows as in Lemma 2.2 of ref.
[64]. If (/U/o)~ covers SK choose ϊλ, ϊ2 C IQ and p 1 ? p 2 localized in ϊλ, /2, unitarily
equivalent to px, p2 respectively, satisfying the following properties:
(a) ίx Π ϊ2 = 0, ^
(b) there exists /j D Iλ U / l 5 /2 3 I2

 u 4 s u c n t h a t h n 2̂ = ^
(c) There exists /0 D ϊx U /2 and J D I U 70.
If Γ β , Γp2β2 are intertwiners between px, βx and p 2, p 2, then

rpiβι e Λ{ϊx) c

= ΓP2P2

= ΓP\P\
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so that

(Pl°P2)l =

and this completes the proof of assertion (iv).

Ad (v). Let pl9 p2 be localized in 70 and let Ix m Io so that pχδρ2 is localized in

Ix. Denote by W a neighborhood of the identity in PSU(1,1) such that if g G W

then IXU g - Ix is contained in some interval J . It follows from locality and duality

that

= Pig, j(Γp2(9))Γpι (g)

is well defined for all g G W. If gx, g2 and gx g2 e W then it follows from the
definition of Γpχ6pi{gx), Γpχdpi{g2) and Γpιtpi{jgx g2) that they satisfy the cocycle
identity

Γ

PιδP2(9\ ' 9i) = agι(
Γpιδ

Hence Γ Qp (g) extends to a cocycle on PSU(l; 1) by the original argument given
in ref. [23], Sect. 8.

Define the shifted representations (pχδp2)g by (px°ρ2)g := ag o (pχδp2) o Qig-ι,
that is,

To prove Moebius covariance of (ρχop2) it is sufficient to prove that the cocycle
Γ

PιδP2(9) intertwines pχdp2 and (ρχδp2)g for g G PSU{\\ 1),

VA G Λ?o (4.3)

It is sufficient to prove the intertwining property (4.3) for arbitrary intervals / only in
the special case of g G W and g Ix C Iχ or Ix C g Iχ. Namely, if g is arbitrary, we
write g as a product gj g2- - gn of elements in ^ such that if Jfc := gx ... gk_x Jj
then either gk - Ik Q Ik+X or gk Ik 2 ^ + i ^ the cocycle property, we have the
decomposition

and we derive the intertwining property for general g, by applying, step by step, the
special case. Since the special case was in fact proven in (iii), the proof is complete.
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IV.3. Haag-Kastler Subnets on Light-Rays

Let ^ o = {*s&(I)}Icsi be a conformal net. We now construct subnets of ^ 0

associated to light rays in Minkowski space and investigate their properties. The
results of this section will be used in Sect. IV.5 to adapt classical results of Doplicher,
Haag and Roberts (see refs. [13, 14]) to the present setting.

Pick a point a £ Sι and project stereographically Sι \ {a} onto R, a representing
the point at infinity. Let pa : Sι \ {α} —•» R denote this stereographίc projection.
Bounded intervals I on R are in one-to-one correspondence with intervals J = p~ι(I)
on Sι such that the closure of J does not contain a. If we define

where / C R is a bounded interval and

^ a := {Λa(I) I / c R is bounded} C ^ 0 ,

then ^ a is a local, isotone net on R and the C*-inductive limit, ^Sa, of ^&a is an
algebra of quasi-local observables in the sense of Haag and Kastler [19]. Furthermore,
.y#α is covariant under the Poincare subgroup of the Moebius group which leaves the
point a fixed (see Appendix I for details). Notice also that the unitary operators
implementing the rotations of the circle on 3@ provide isomorphisms between the
different C*-algebras ^ # α a e Sι.

Let a £ Sι be fixed. For convenience, we adopt the following notation: if / c R
is an interval (or any other set) we write Isι for the inverse image of / by pa, i.e.,

conversely, if / c 5 1 , IR will denote its image in R under pa, IR := pa(I).
On R, the complement of a bounded interval / := (α, b) is defined by J / R :—

I<U I>, I< := (—oo, α), /> := (6, oo), and the algebra, ^a(I/R) for the unbounded
region /< U I> is defined as the C*-algebra generated by all ^Sa(J), such that J is
a bounded interval contained in I> or ^ Note that the weak closure J&Oί{l-^)~w of
~&a(J^) is given by

Given an isotone, local net of von Neumann algebras on 1, J = {^(-0 | / C R
is a bounded interval} we define its dual net by

/ c R is a bounded interval} .

Clearly, a net ^ is local if and only if J& C ^ d .

Definition 4.9. (i) A local isotone net ^ on R is said to satisfy duality if
holds.
(ii) A local isotone net ^ on R is said to satisfy essential duality if

holds.

The following lemma is due to J. Roberts.
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Lemma 4.10. A local net ^4 = {^(I)}IcR on R satisfies essential duality if and

only if ^ d is local.

Proof. Since by the remark preceding Definition 4.9,

<τβd is local & Λd C <Add ,

we have to show that the converse inclusion *Ad D Λdd follows automatically if ,
is local. Now, by definition,

where the symbol n indicates norm closure and the inclusion follows by locality of
the net ^ . Taking commutants on both sides, we obtain

n
I

But,

1 jocj'R

={ u ^ o ^ } 7 - n
and this completes the proof.

Theorem 4.11. Let ^ 0 = {^(I)}IcSι be a conformal net. Then ^3a satisfies
essential duality, for any a G S1.

Proof By Lemma 4.10 it is sufficient to show that ^ ^ is local. Since ^a(I M) is the
C*-algebra generated by all ^ α ( J ) C ^ α ( / < ) or Λa(J) C ^ α ( / > ) for J bounded,
it follows that

by conformal duality. But as the following picture shows,

I I I
J . < i. X >,

Pα

< u I)sι) π ^ ( / > u 7)s,

= ̂ α(/< u /)— n . ^ ( ^ u ir
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by Eq. (4.4). Hence

^ ( / ) = %Aa{χ< u iyw n ^ α ( / > u iyw. (4.5)

Now the proof of locality for the net J@^ is obvious. If Iλ(M2 = 0, we may assume

-f-) (r-1

that Iγ lies on the left of 12\

so that
Iλ \Jlλ> D / 2 U / 2 > ,

I\ U/ 1 < : C / 2

U ^2<

But
ί u i{<)sl) nΛ>ifjx u iλ>)Sι)

and

^ί ^ u /2<)5θ n MfJ2 u

C Λ?((I2 U / 2 > ) 5 i ) C ^ ( ( ^ U

by locality of the conformal net ̂ 0 . This shows that the net ̂ ^ is local and completes
the proof of the theorem.

Remarks 4.12. (i) Essential duality was introduced by Roberts [65] in his study of
spontaneously broken internal gauge symmetries in algebraic quantum field theory,
(ii) If ^4a — Λή^ then the net ^&a is dual. This situation arises for a massless

scalar field [53,31] or for the local algebras generated by a ί/(l)-current [30,31], for
example. However, in general this equality does not hold; counter examples are the
local algebras obtained from a Virasoro algebra of central charge c > 1 [31].
(iii) It follows from Eqs. (4.4) and (4.5) that ^ C ^ 0 .

Theorem 4.13. Let p be a covariant representation of ^ 0 localized in an interval

Io C Sι and a G Sι\I~.

(i) The restriction of p to ^ a extends to an endomorphism pa of ^ a localized in

^OR

(ii) The restriction of p to ^4^ extends to an endomorphism p^ of ^?d

a localized in
Im such that pd

a\4a = pa.

(iii) pa and p^, are covariant under the Poincarέ subgroup of the Moebius group
leaving the point a fixed.

Proof, ( i ) S i n c e f o r e v e r y b o u n d e d i n t e r v a l / c l a n d e v e r y

A G Λ?α(J) = ^(Isι), pa(A) := Pjsi (A)

is well defined and norm-continuous, pa extends to ^ # α . Let J be a bounded interval
in R containing Im and /. By locality and conformal duality,

pa(A) G

since p is localized in Io. Hence ρa is an endomorphism of
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(ii) If J c R is bounded and A e ^ ( / ) then A G ̂ ( ( / U / < ) 5 i ) Π ^ ( ( J U / > ) 5 i ) .
Hence

is well-defined and extends by norm continuity to ,/S^.
To prove the second equality, we can use the following arguments. Let / and J be

intervals on Sι such that / := (α; /?), J := (7; α) and /Π J φ 0. It is then sufficient
to prove that if A G ̂ ( / ) Π ̂ ( J ) then pj(A) = Pj(A). Without loss of generality
we may also assume that \\A\\ < 1.
(a) Let an —» α, for n —» 00, be such that {/n}neN, In := (α n ; /?), is an increasing
sequence of intervals contained in /. We first prove that

\J ( ^ ( / n ) Π ̂ ( J ) ) I = j&iX) Π ̂ ( J ) .

By taking commutants on both sides and using duality, this equality is equivalent to

But
ί I I

/') V ^ ( J') ,

where the last equality follows by conformal invariance of the net [31].
(b) It now follows from (a) and Kaplanski's density theorem that there exists a
sequence (An)neN with An e ^(In) Π ̂ &{ J), || A|| < 1 such that ω - lim An = A.
Then by weak continuity of p1 on J^(/), n^°°

Pj(A) = ω- lim p^AJ .
n » o o

Since / n c / and An e

and since In U J is an interval with non-empty complement,

where the last equality follows from An G *s&(In) Π ̂ S(J). Hence

= cj - lim
n-^ oo

by weak continuity of p j on ^ ( J ) . This completes the proof.
Let now J C R be an interval containing / 0 R and /. Then

J U J< ^ J o κ U / U
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so that by locality and duality,

P(iui<)sl (A) = P(JUJ<)S1 (A) e ^ ( ( J U J < ) 5 i ) ,

Piiυi>)sl (A) = P(JUJ>)S{ (A) € ^((J U

which means that

p£(A) G ̂ ( ( J U J > ) 5 i ) Π Λ?((J U J < ) s i )

and this shows that ρa is an endomoφhism of . ^ .
We now check that

/ R ) = ί d
 I

Since ^ ( ( / O R ) / E ) i s t n e Cf*-algebra generated by the ,Aa(J) with J c (/ 0 R)'R

and pa is norm-continuous, it is sufficient to check that p^l^cj) = id |^d ( J ) , for

J c (7OIR)/R We may assume that J lies on the left of Im so that (J< U J) Π Im = 0.

Hence for A e ^

since p is localized in /0 and ( J U J ^ ^ i Π /0 = 0. This completes the proof
of (ii).
(iii) The covariance of pa and p^ is an immediate consequence of the Moebius
covariance of p and the fact that we restrict our attention to Moebius transformations
leaving a fixed and which, consequently, leave ^ a and ^ ^ invariant.

Remarks 4.14. (i) From now on, when we consider representations of <A§ localized
in a given interval Io we will call a G Sι\I^~ a point at infinity.
(ii) Let ρx and p2 be representations of ^ 0 localized in /0, and a a point at infinity.

Since ρia(resp. pfa) are endomorphisms of ^#α(resp.^#^) for i = 1, 2, they can be
composed. It is immediate that the composition of p{ and of p^ as representations
of S&0 coincides with pla o p 2 α on ^4a (resp. with pf̂  o ρ%a on ^ ^ ) that is,

(PldPl)a = Pi* ° Pla ( r e S P (PlδP2)α = Pfα ° PlJ'
(iii) In view of the preceding remarks, we shall usually not distinguish p from pa

and p^ and write p for p^ or pa in the following.

.4. Braid Statistics Operators

We now proceed to define the notion of statistics of superselection sectors for field
theories on the circle.7 Statistics operators were first defined by Doplicher, Haag
and Roberts (see, e.g., [13, 14]) for local charges of theories in four dimensional
space-time; their results were later generalized by Buchholz and Fredenhagen [15]
to "topological" charges. It was recently observed that for two-dimensional local
theories [22] and for three-dimensional theories with "topological" charges [23-25]
the statistics of superselection sectors is more general, involving braid statistics. The
situation considered here is analogous to the one of refs. [23-25] (see also ref. [30]
for a treatment of abelian braid statistics in the example of £7(l)-current algebra).

7 In this section we present a short summary of basic facts concerning braid statistics. For more
details, see [22, 25, 30]
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Definition 4.15. Let a G Sι and pa be the stereographic projection mapping S ^ j α }
onto M, as in the last section. If Ix, I2 are two intervals on Sι such that Iιπl2 = Φ
and which are mapped by pa onto bounded intervals on M, we write Ix <a I2 (resp.
/ l α > I2) if Im = Pa(I\) lies on the left of I2R = pa(I2) (resp. / 1 R lies on the right

Definition 4.16. Let px and p 2 be two representations of ^ 0 localized in an interval Io

and a e Sι a point at infinity. Pick a representation /^ (resp. px) unitarily equivalent
to pι and localized in an interval ϊx (resp. Iλ) such that IQΠΪ{ = 0, α ^ /j~, /J α > /0

(resp. /0 Π /j = 0, a 0 If , i\ <Q; /0) and let J (resp. J) be an interval containing
Io U /j (resp. /0 U ϊγ). If Γ9 ] / 5 i (resp. Γpιβι) intertwines ρx and pj (resp. px and ρ2),
define

Remark 4.17. Clearly, ε^ δ and ε~ δ p do not depend on the particular choice of
the point a at infinity made in Definition 4.16 as long as the conditions specified in
Definition 4.16 hold. (The next figure shows two equivalent choices, a, α', of points
at infinity, for /0, Il9 Il9 fixed.)

Lemma 4.18. (i) The definition of 'ε+ δ p (resp. ε δp ) is independent of the particular

choice of IXθί > IQ and px (resp. of ϊx <a Io and βx) as long as they satisfy the
conditions specified in Definition 4.16.
(ii) The unitary operators £^^P2 intertwine the representations pχδρ2 and p2δpx,

pχδp2(A)ε±

6 = ε ±

δ t)p2δpλ(A) VΛ G ̂ 0 (4.6)

and satisfy

Proof. See, for example, refs. [13, 22-25 or 30] for the proof of (i) and of Eq. (4.7).
Equation (4.6) is an immediate consequence of Lemma 4.8.

If p is a representation of ^ 0 localized in some interval, we write pm for the
composed representation pδ ... dp (i-times).

Definition 4.19. Let Bn denote the braid group on n strands with generators
G\, σ

n-\ a n d relations

σiσι+\στ = σi+ισiσi+\ > z = 1,... n - 2 , (4.8)
σiσj = σjσi i f 1̂  ~ '̂1 > 1 ' ^ j = !J ^ - 1 (4 9)
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If p is a representation of ^ 0 localized in Io we define

<(σ,) := pόi-l(ε+δp), i = 1,.. .n - 1. (4.10)

Theorem 4.20. (i) The map τr£ : £?n —> ρδn(Λ?0)
f extends to a unitary representation

of the braid group on n strands Bn.
(ii) ΓΛw representation depends, up to unitary equivalence, only on the sector [p]
of p.

Proof To prove (i), it is sufficient to check the relations (4.8) and (4.9) for the
operators defined by Eq. (4.10), see refs. [23-25 or 22]. Part (ii) follows from Remark
4.17 and arguments analogous to the one used in ref. [13], Theorem 4.3.

IV.5. Super selection Sectors with Finite Statistical Dimension

We now show that several classical results on the superselection structure of sectors
having finite statistical dimension in theories defined on Minkowski space-time also
hold for conformal field theories on the circle. Our strategy is the following. We
choose a point at infinity a G Sι and apply well-known theorems of Doplicher,
Haag and Roberts (as adapted in ref. [22] for low-dimensional theories) to the nets
defined in Sect. IV.3. We subsequently show that all the results obtained in this way
are independent of the particular choice of the point at infinity. Clearly, this way of
proceeding is not very natural in the present context. It has however the advantage
of considerably reducing further technical work.

We start with the following lemma.

Lemma 4.21. Let p be a covariant representation of ^ 0 localized in the intervals I
and J C Sι let p be unitarily equivalent to p and localized in I. Then

p{Mi))' n MX) - p{MJ))' π MJ), G)

p(A(i))' n Mi) = P{Λ(X))' n Mi) GO

Proof Ad (ii). Let U be a unitary operator intertwining p and β,

p(A)U = Up(A), \/A e . Λ .

By locality and duality, U G MI) s o that

)' n Mi) = u{p(Mi))f n Mi)}u*
= Uβ(Mi))'u* n

Ad (i). Choose g G PSU{\\ 1) such that g I = J. Then

)1 n MJ) = 7 Γ O

M ( 2 ) ( P ( ^ ( J)) ' n M J))^(

^ f M ( g f } Π 7Γ

But ρg is unitarily equivalent to p and localized in /, so that the conclusion follows
from (ii).
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Definition 4.22. Let [π] be a sector of J40. Pick p G [π] localized in I C Sι. The
sector [TΓ] is said to be locally irreducible if

Π ^β(I) = C t j%•. (4.11)

Remark 4.23. (i) It follows from Lemma 4.21 that Eq. (4.11) is independent of the
particular choices of p G [π] and of / C Sι.
(ii) Let p G [π] be localized in / and a G Sι a point at infinity. Since

P(^oy £ P(^J c p(^?(/))' n

Eq. (4.11) implies that the sector [π] is irreducible.
Given a C* -algebra ,/& acting on a Hubert space J^, let ̂ # ^ denote the set of

bounded linear mappings from ^ into Ήtjffl) equipped with the point weak open
topology (see ref. [13]). If φ G ̂ M'y/\ we define the norm of φ as usual,

and the unit ball

J®{* := {φ e ΛS^ \ \\φ\\ <1}

is a compact subset of <J6'/& in the point weak open topology.
Let p be a representation of ^ 0 localized in the interval /; choose a point at

infinity a G S1, and let IR — pa(I), where pa : 5 ! \{α} -+ R is the stereographic
projection already considered in Sect. IV.3. In the following we do not distinguish
between p and pd

a. Note that p^ is localized in IR.

Definition 4.24. A positive linear mapping φ G ̂ S'^<* is called a left inverse for p
on J/a if

φ(Ap(B)) = φ(A)B VA,Be^d

a1 (4.12)

φ(tje) = ίje. (4.13)

Remark 4.25. (i) Since a positive mapping is automatically self-adjoint, we also have
that

φ(p(A)B) = Aφ(B) \/A,Be^d

a.

(ii) If p is localized in / then

(iii) Since the net ,Ad

a is dual on R, for any interval J D JR,

so that 0 maps «y#̂  into ^#^.

We now pick a sequence of bounded intervals {Ik}keN> h ^ ^» "converging"
toward infinity in the following sense. For any bounded interval / C R, there exists
fco(J) G N such that

/ n Ik. = 0 VA: > ko(I).
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If pk is a representation of ̂ 0 localized in IkS\ and Uk a unitary operator intertwining
p and pk,

pk(A)Uk = Ukp(A) V A G 4 , (4.14)

then
ρ(A) = lim UkAUk VA G t ^ ,

fc—> oo

where convergence is understood in the norm topology.

Lemma 4.26. Let Uk, k e N, be defined as above. Then the sequence of maps

{&dUk}keN C ^M^a has at least one limit point and every such limit point is a

left inverse for p on ^#^ .

Proof. See ref. [13], Chap. Ill

Lemma 4.27. The set of all left inverses of a given endomorphism p on ^4^ is a

non-void, compact convex subset of the unit ball <J&\yQC.

Proof See ref. [13], Chap. III.

Lemma 4.28. Let p be locally irreducible, ε~^δ be as in Definition 4.16 and φ a left

inverse for p on ̂ ^ . Then
(i) φ(ε+

p-op) = X iM,for some XeC.
(ii) φ(ε-pδp) = X'ίM, (λ defined by (%)).

p

(iii) If ΦQ is a left inverse for p obtained by the limiting procedure of Lemma 4.26,
then

\\φ{A*A)\\>\\\2\\A*A\\,

φ(A*A)>\λ\2φ0(A*A),

where X is defined by (i).

Proof. Ad (i). Pick A G i Q C i J , then

= φ(ε+

pδppdp(A))

= φ(pdp(A)ε%p) = p(A)φ(ε+

pόp)

so that φ(ε+δp) e p{y4j C p(^(I))' Π Λ{ΐ) = C IM, by the local irreducibility
of p. This completes the proof of (i). Part (ii) follows from Remark 4.25 (i) and
Eq. (4.7). For the proof of (iii), see ref. [13], Chap. III.

Definition 4.29. Let p be a locally irreducible representation of ^ 0 localized in /
and a a point at infinity. We say that p has finite statistical dimension if there exists
a left inverse φ for p on ̂ #^ such that φ(ε^δp) = X Ί M with λ φ 0. The statistical
dimension of p is then defined by

d(p) := i - i

Theorem 4.30. (i) // p is locally_ irreducible with finite statistical dimension then p
has, a unique left inverse φ on .Λ^.
(ii) The sequence of charge transport operators {adLΓ

A,}A,eN defined in Eq. (4.14)

converges to φ in ^S"^^.
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(iii) If p £ [p] is a representation of <τ£0 localized in an interval J such that a is a

point at infinity for p, then p, too, has a unique left inverse φ on ̂ S^ and

Proof See ref. [13], Chap. Ill and ref. [22].

We now establish that the statistical dimension is characteristic of the locally
irreducible sector [p] by showing that its definition is independent of the particular
point at infinity,

Theorem 4.31. Let pbe a locally irreducible representation of ̂ ^ localized in I C Sι

and a, β be two possible points at infinity. If p has finite statistical dimension and φa

fresp. φβ) is the left inverse of p on ̂ 4% fresp. on ̂ §β) then

for any interval J 2) / such that a, β £ J~. In particular

Φa(εtδp) = Ψβi^δp)

so that d(p) is an invariant of the sector [p].

For the proof of Theorem 4.31 we use the following concepts.

Definition 4.32. (i) Given an interval I C S\ let ̂ A1 be the C*-inductive limit of
the algebras ^ ( J ) , J ξl. Clearly, Λt C ̂ 4{I) and j&{ =
(ii) Let p be a locally irreducible representation of ^So localized in /, and J an
interval such that J 2) /. A local left inverse for p on ,/&3 is a positive linear mapping
φj e J&Aj satisfying Eqs. (4.12), (4.13), for A, B e Λj9 and such that

0(<6P) = λ l , λ e C . (4.15)

Proof of Theorem 4.31. Since p has finite statistical dimension, the unique left inverse
φa for p on tτ#^ satisfies φa(ε+δ ) = λ 1 φ 0. Let J be an interval such that
J D /, a φ J". The restriction of φa to ̂ Sj is a local left inverse for p on ̂ SJm

If J = (7, δ), we pick a sequence of intervals {J k} k e N on S] such that Jk C J and
which "converges towards 5" in the following sense. If J is any interval on Sι for
which δ φ J~ then there exists ko( J) such that

J n Jk - 0 Vfe > feo( J ) .

For k G N, pick a representation ρk localized in Jk unitarily equivalent to p and Vk

intertwining p and pk,

pk(A)Vk = Vkp(A) V i G J 0 . (4.16)

Just as in Lemma 4.26, any weak limit point φδ of {adVk}keN in yMλ '
δ is a left

inverse of p on y&f and, as in Lemma 4.28 (i), it has the property that Φs(εtdp) = f1'^'
μ e C, since p is locally irreducible. Hence the restriction of φδ to y&j is a local left
inverse for p on ,Λj. Furthermore, the proof of Lemma 4.28 (iii), as given in ref.
[13], can be repeated, word by word, to show that if φ is any local left inverse for p
on ,Aj and Φ(ε*δp) = η 1, η G C, then

* ) > \η\2φδ(A*A) WAe^Sj. (4.17)
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We now proceed as in ref. [13]: the set of local left inverses for p on J&J is a compact

convex subset of ^Mx

 J, since Eq. (4.15) is also preserved by convex combinations
and taking limits. Hence, by the Krein-Milman theorem, there exists an extremal local
left inverse φexi such that φext(ε*6 ) = η I φ 0, because Φa(ε*δp) = λ 1 ^ 0. But

φ t - £20*
where φx := - ^ — - r — - is still a local left inverse for an ̂ Sj since by Eq. (4.17)

1 — ς
it is still a positive map. Equation (4.18) contradicts the extremality of φext unless
φext = φδ. In particular, φδ(ε^δp) = μ i ^ 0, and </>ext is the unique extremal local

left inverse on ̂ £j with finite statistical dimension. Repeating the same construction

for the second endpoint 7 of J we see that ΦΊ\j&3 = Φext

 = ΦSIΛJ- ^n particular

Φη\^>{J) ~ Φδ\./3(J) f° r a n y interval J <& J. Letting the endpoints 7 and δ of J vary
we obtain the statement of the theorem.

Corollary 4.33. Let p be a locally irreducible representation of ^ 0 localized in the
interval I C Sι, and having finite statistical dimension. Let a £ Sι be a point at
infinity and J 2) / an interval such that a φ J~. The left inverse φa of p on ̂ ^ has
the property that

c M. J).

Proof Let J o = (7, <5) be any interval such that J o D J . Choose a sequence of
interval {«//c}fceN, J& C J o, "converging towards δ" as in the proof of Theorem 4.31,
representations pk localized in Jk and interwiners Vk satisfying Eq. (4.16). Clearly
Vk G ̂ &{Jo), so that if A e *j&(J) then φa(A) G ̂ ( J o ) ' s m c e ^ ^s a weak limit point
of VkAVk. This means that

Because of the conformal invariance of the net [31],

This completes the proof of the corollary.

The following theorem, due to Longo [67], is also valid in the present situation;
(see also ref. [22], Eq. (4.40), and ref. [25], Eq. (6.38), for related results).

Theorem 4.34. Let pbe a locally irreducible representation of^S0 with finite statistics
localized in I and a a point at infinity. Then

= d(pf ,

where Ind[ : •] denotes the minimal index of the inclusion p(^£(I)) C

Proof. It follows from Corollary 4.33 that ε := p o φ is a conditional expectation
of ^&{ΐ) onto p(^4(I)). Since p is a localized endomoφhism of ^ ^ , we construct a
localized endomoφhism of ̂ 4^ conjugate to p just as in ref. [22], Appendix B. The
proof of Theorem 8.5 in ref. [67] now shows that
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where Indε[ : •] is the index associated to the conditional expectation ε. Since p is
locally irreducible, Indε[ : •] coincides with the minimal index [67] and the proof is
complete.

Since the set of (locally) irreducible representations of ^ 0 is not closed under
composition, we must generalize the previous considerations. At this point we need
to assume that the superselection structure of a conformal net ^ 0 can be determined
by a single local algebra.

Assumption 4.35. Let p, p' be representations of ^ 0 localized in /. Suppose that

S e MI) and that

= p'j(A)S, VA e MX)

Then S intertwines p and p\ i.e.,

Sp(A) = p'{A)S, V i e J 0 (4 19)

Remark 4.36. (i) J. Roberts has shown that this assumption holds for dilatation-
invariant theories on Minkowski space-times of dimension greater or equal to three
(see ref. [66], Theorem 4.3). However, the proof given in [66] does not apply directly
to the present situation,
(ii) Equation (4.19) implies that, for p localized in /,

so that, in particular, irreducibility (Definition 4.3 (i)) and local irreducibility (Defini-
tion 4.22) coincide.

Definition 4.37. Let p be a representation of ^40 localized in / and a E Sι a. point
at infinity.

(i) A left inverse φ for p on ^^ is said to be standard if

Φ(ε+

pdp)φ(ε+

pδpf = φ(ε+

pδpfφ(ε+

p6p) = ξ - l M , ξ e C .

(ii) The representation p is said to have finite statistical dimension if there exists
a standard left inverse of p on t/#£ such that φ(ε+6 )* φ(ε+6 ) = ξ lM Φ 0. The
statistical dimension of p is then defined by

The following results are adapted from the usual setting to the present situation
without essential modifications.

Theorem 4.38. (i) Let p be a representation of^Q having finite statistical dimension.
Then p is a finite direct sum of irreducible representations of^Q having finite statistical
dimension,

and d(p) =

2 = 1

m
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(ii) If ρx and ρ2 are representations of ^ 0 having finite statistical dimension then
pχδp2 has finite statistical dimension and

Proof (i) Since p(^&0)' C p(Λ%)\ the proof that p is a finite direct sum of
irreducible representations of ^ 0 *s J u s t a s m r ef [13], Lemma 6.1. Covariance of
the subrepresentations then follows by the proof given in ref. [14], Lemma 2.2. The
additivity of the statistical dimension follows as in ref. [22], Eq. (3.45), for example
(ii) See ref. [22], Lemma 3.5 and Eq. (3.34).

We now proceed to define conjugate representations.

Definition 4.39. Let p be a locally irreducible representation of <y£0 localized in /.
A locally irreducible representation p of ^ 0 localized in / is said to be conjugate to
p if pop 9έ pop contains the vacuum (identity) representation with multiplicity one.
That is, there exists an isometry R in pδp(^0)' such that

pδp(A)R =

It then follows that R := ε~^δpR satisfies

ρdp(A)R = RA V i e 4 .

Lemma 4.40. Let p be localized in I, p a representation conjugate to p and a G Sι

a point at infinity.
(i) If φ (resp. φ) is a left inverse for p (resp. p) on ^#^, then

φ(ε+

δ ) = φ(ε+6-), (4.20)

in particular, the statistical dimensions of p and p coincide, d(p) = d(p).
(ii) The representation p conjugate to p is unique up to unitary equivalence.

Proof Ad (i). The proof of Eq. (4.20) is identical to the one given in ref. [14] chapter
III, as already noticed in ref. [22].

Ad (ii). The assertion follows just as in ref. [14], Theorem 3.3.

Guido and Longo [33] have given an explicit construction of the conjugate
representation which we now adapt to our setting.

Definition 4.41. Let h G PSU(U 1) and K c Sι be an interval. Denote by Iκ the
reflection about the endpoints of the interval K (see Appendix I) and let

jκ(A) := ad JK(A) = JKAJK MAeΛ

where Jκ is the modular conjugation of ^/&{K). If p is a representation of ^ 0 localized
in /, define

pf\A) := ah o j κ o pIκ .h-ι.jθ j κ o ah-i(A) WL e Λ{J). (4.21)

Theorem 4.42. (See ref. [33], Theorem 8.3). Let pbe a locally irreducible represen-
tation of ^ o localized in I.

(i) The family ρκ'h = {p^'^} J c 5i defines a locally irreducible representation of
localized in h - Iκ -1.

(ii) pκ>h ^ pκ'ti' Jor all intervals K, K' C Sι and for all h, h! G PSU{\\ 1).
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(iii) The representation pκ>h transforms covariantly under the unitary representation

ofPSU(U I) given by

π?Kth(g):=otκojκ(πM(3dIκ.h-ι(g))), g G PSU(1; 1).

That is,

f K h ¥ h ( S f = pf\ag{A)) \/A € ^(9~l J), (4.22)

V§ G PSU(l; 1), where g denotes as usual the image ofg by the canonical projection
inPSU(U 1).
(iv) Let J D I be an interval and u a unitary operator implementing pj on ^β(J). If
h e PSU(l\ 1) is such that h Ij I = I then the unitary operator jj(u*) implements
pJjh on tτβ(J).

For the convenience of the reader, a proof of this theorem is reproduced in appen-
dix III.

Corollary 4.43. Let p be a locally irreducible representation of ^ 0 localized in I
and having finite statistical dimension. If J D I and h G PSU(\; 1) is such that
h Ij -1 — I then pJ'h is a representation conjugate to p.

Proof By Theorem 4.43 (iv), we know that if pj is unitarily implemented by u on

yέ{J). Then pJjh is unitarily implemented by jj(u*) on ,A(J). Hence it follows from

Lemma 2.1 of ref. [33] that pJjh is a conjugate endomorphism of p3 on .^?(J). Since
p has finite statistical dimension it follows from Theorem 4.34 (or directly from the
generalized Pimsner-Popa inequality, see ref. [67], Th. 4.1) that the minimal index of
the inclusion ρ(^4(J)) C y/?(J) is finite. Since p is locally irreducible, we may apply
Theorem 4.1 of ref. [68] and we obtain that

p p(())' n

contains an isometry such that

p o p(A)R = RA, VA e^

Furthermore, the endomorphism p o p of ^S(J) contains the identity representation
with multiplicity one. By using explicitly Eq. (4.19), we see that

and that the representation pop of ,AQ contains the identity representation with
multiplicity one. This completes the proof of the theorem.

Remark 4.44. Given a sector [p] of ,JS0 having finite statistical dimension, the map
lp] —* ίp] : = ίp] defines a conjugation on the set of sectors of , ^ 0 having finite
statistical dimension.

We conclude this section by summarizing well-known results on the fusion rule
algebra associated to a list of representations of ,/S0 and by presenting some natural
conjectures concerning it.

Definition 4.45. Let i, j and k denote irreducible sectors of the conformal net ^β0

having finite statistical dimension. If p^ (resp. p^ is a representation of ,y 0̂ belonging
to the sector i (resp. j), we denote by NΊ

k

? the multiplicity of the sector k in the
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decomposition of pfipj (i.e., the number of irreducible representations belonging to
the equivalence class k in the direct sum decomposition of p^p.).

Let L denote a list of irreducible sectors of the conformal net ^ 0 having finite
statistical dimension, closed under the decomposition of product representations and
conjugation. The multiplicities NΪ for i, j , k e L have the following well-known
properties.

Lemma 4.46. (i) N§ = Nfr = N\. = N^for i, j , k G L .

(ii) Nij = δβ, where 1 € L denotes the sector of the vacuum (identity representation).

(iii) £ N^Nl,, = Σ N\tN]k9for i, j , kJeL.
S<EL ieL

(iv) Σ Njίkd(l) = d(p)d(k), where d(l) denotes the statistical dimension of the sector
l£L

IeL.

Proof. See ref. [25] for example.
On the positive lattice N L , we define a distributive, associative and commutative

product by setting

k

and an involutive and additive conjugation by

as in Remark 4.41. This defines a fusion rule algebra Φ in the sense of ref. [69]. The
map

defines a faithful representation of the fusion rule algebra Φ on the lattice NL by non-
negative integer \L\ x |L| matrices. These matrices are called fusion rule matrices. An
extensive study of properties of fusion rule algebras derived from low-dimensional
algebraic quantum field theories as well as a complete classification of those algebras
generated by a single element having statistical dimension not exceeding two can be
found in ref. [69]; (see in particular Th. 7.3.11).

We now restrict our attention to theories having only finitely many sectors,
\L\ < ex), so called rational theories.

Definition 4.47. Given a sector ieL, let ρi be a representation belonging to the

sector i and π^f be the unitary representation of PSU(l; 1) implementing the Moebius

automorphisms of the net ^So.

(i) The generator of rotations for the representation π^ of PSU(1; 1) will be denoted
by Kpi and the generator of rotations in the vacuum representation by K.
(ii) The (conformal) spin si of the sector i is defined by

where R(2π) denotes the rotation of 2π in PSU(l; 1). The real number si is defined
modulo 1 and is an invariant for the sector i. Of course sλ = 0(mod 1) holds for the
sector of the vacuum representation.
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As noticed in refs. [25] and [70], if a theory is rational one can define two matrices,
S and T, as follows:

S : = ( S y ) i j 6 i , where 5 y :

and

keL

T := (^ΛieL . w h e r e Tij :

The constant σ, defined modulo 8, is given by

e-2πiσ/24 : = ί A j
e-2πiσ/24 : = ί A j ? μ :== ^ d(i)2e-2™* . (4.23)

If S is invertible, it diagonalizes the fusion rule matrices N{, i E L,

Nm V^ SkjSijSjm

Furthermore, 5 and T are then unitary and satisfy the relations

S2 = (TS)3 = C, TC = CT = T, (4.24)

where C = {δφi^L is the charge conjugation matrix. That is, 5 and T generate a
projective unitary representation of PSL(2; Z). As proven in ref. [70], S is invertible,
provided all sectors i G L satisfy braid statistics (i.e., provided ε~J".δ φ ε~δ , for
Pi e i, Mi e L).

We are now ready to formulate some important conjectures, in analogy with ideas
in rational conformal field theory.

Conjecture 4.48. Let Φ = N L be the fusion rule algebra of a rational conformal net
^ 0 , \L\ < oo. For i £ L and p% G i, we expect the operator e2πιτK^ to be trace
class for Im r > 0.

Defining the specialized characters

Xt(τ) := t r e 2 π ι τ ( K π " σ / 2 4 ) , ieL, (4.25)

where σ is determined by Eq. (4.23), we conjecture that the modular transformations

r —• — and r —• r + 1 are implemented by unitary matrices Sx = (S*j)hjeL and

satisfying Eq. (4.24). As an immediate consequence of Eq. (4.25) and of the definition
of Γ one sees that T — Tx. Our main conjecture is that

Sx = S (4.26)

also holds.
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It then follows from Eq. (4.26) that for i e L,

d(i) = | « = | | I = lim k ^ q = lim 2 ^ 2 . (4.27)

leL

This last equation characterizes d(ϊ) as the relative "size" of the sector i G L compared
to the size of the vacuum sector [71]. (It is conceivable that a direct proof of (4.27)
is easier than to proceed via a proof of (4.26).)

IV.6. Superselection Structure of Conformal Nets Constructed
from Vacuum Representations of Loop Groups

We conclude this chapter by explaining how the conformal nets constructed in Sect.

III.9 fit in the usual framework given by the algebraic theory of superselection sectors.

We proceed by analogy with well-known results of algebraic and conformal quantum

field theory.

Fix a positive level m and consider the set P | m ) of irreducible representations

of LG0. Let (τrm^o, ^mj[0) be the vacuum representation of LG σ at level m,

^ 0 := {^£mA0(I)}icsl m e conformal net constructed in Sect. III.9 and π ^

the unitary representation of the Moebius group on J^m y j which implements the

corresponding automorphisms of LG0. In the context of loop groups, we obtain
representations of the conformal net t ^ 0 by the following lemma.

Lemma 4.49. Let A e P | m ) . The representations 7rmyj : ,/§(I) —> π m y j (^S(I)) and

TΓ̂  : *A(Ϊ) —> TΓ^C^CO) of LG0 determine a representation π^ = {π^ j}IcSι of the

vacuum conformal net y&§ = {^mj{ (I)}icsι s u c n tnatfor each I C Sι,

is an isomorphism.

Proof. It follows from the proof of Theorem 3.3 that for each interval I C Sι there
exists a unitary operator U : ^ m y i —> 3@& such that

Hence the map

= ^ ( / ) , V/ e J(I) (4.28)

extends to an isomorphism π^ 7 = ^mA (I) —• J&/£I) for all intervals I C S1. The
consistence of these representations, Moebius covariance and the spectrum condition
are immediate consequences of Eq. (4.28). This verifies all properties of Definition
4.1 and completes the proof of the lemma.

If A e P | m ) , we will also denote by A the corresponding superselection sector
obtained by the preceding lemma. It follows from Lemma 4.49 and Lemma 4.6 that
every representation {π^ T}IcSι of ,A0 can be obtained by composing the vacuum
representation τrm/jo with a localized endomorphism p of ./^0. We may therefore
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apply the general theory presented in Sects. IV.1-IV.5 to define a composition of
representations, unitary braid group representations, etc.

What is missing to complete the picture is a mathematically rigorous result
showing that the statistical dimension, d{A), of every sector A is finite and permitting
to compute d(Λ) explicitly. However, assuming that the conjecture described in
Eq. (4.27) of the previous section holds, this gap can be filled. From Eq. (4.27)
and formulas in [62] we obtain the following expression for d(Λ):

where χ^(τ; %) are the specialized characters of Kac and Wakimoto (see ref. [62],
Sect. 4.8). It follows from the asymptotic expansion given in Sect. III.8 and Eq. (2.2.1)
of ref. [62] that

d(A) = a = trΛ exp
a(mA0)

where the trace is taken in the irreducible, finite-dimensional ^-module with highest

weight A, and v~ι(ρ) is the inverse image of p — Σ A m m e Cartan subalgebra
2 = 1

ί) of & by the isomorphism v introduced in Sect. III. 1. Due to Theorem 4.35, this
formula coincides with a conjecture of Wassermann formulated in ref. [29]

Explicit formulas for the S and T matrices are also well-known in this context;
(see ref. [62], Eqs. (2.1.5)-(2.1.11)):

— ^AXA2^AUA2

 G ^ + ' -LAxA2—
e ι°AλA2i

where

(A + β 1 A + p) _ (β\ β)
SΛ'~ 2(m + g) 2g

is called the modular anomaly by Kac and Wakimoto. Applying the so-called "strange"
formula (see ref. [62], Eq. (1.1.1)), we obtain that

(see Sect. III.7 for the definition of hχ and σ) so that h^ coincides with the spin of
Definition 4.47 and σ with the constant defined in Eq. (4.23).

For the S matrix one has

—2πiv ι(Ai + p)
exp — —

-2πiu-ι(p)

Given A E P | m ) , let tA := mA0 + tΛ, where for a S^-module with highest weight Λ,
ιA is defined as the highest weight of the contragredient .^-module. It follows from
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where the first equality is given by Eqs. (4.24), (4.26) and the second follows by Eq.
(2.1.11) of ref. [62] that ιλ is the conjugate sector to Λ.

Finally, we remark that the braid group representations of Sect. IV.3 are expected
to be of Hecke [72] or of Birman-Wenzl [73] type in these examples.

In conclusion, we have proven partial results strongly suggesting that the irre-
ducible representations of a loop group at fixed level provide examples of algebraic
conformal field theories with finitely many superselection sectors corresponding to
chiral WZW-models [74].

For a complementary approach to these problems and complete results in the
examples of the chiral Ising model and a class of level-one Kac-Moody algebras see
[80].

Appendix I. Notation and Geometry

Let Sι := {z e C | \z\ = 1} be the unit circle in C and S± := {2 e S 1 | Imz ^ 0}
its upper and lower part. If we denote by / any open, non-dense interval of the circle
then,

Γ :=(Sι\I)°

is the interior of its complement in Sι: The group SU(l; 1),

M2(C) \a\ - \β\2 = 1J

acts as a transformation group on 5 1 :

(A\z)eSU(l;l)xSι
a β

β ά

az + β

βz + ά
(AI.1)

This action factors to a transitive action of PSU{\\ 1) = SU(l\ 1)/{±1}. PSU{\\ 1)
is the group of fractional linear transformations of the circle (Moebius group).

The geometric interpretation of the action of SU(1; 1) on 5 1 is most easily seen
by performing the stereographic projection of S ^ - l } onto R which maps - I G S 1

on oc:

it is given by

x : = (—i))

z+ 1
i) = ±1
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( —i i\
Setting T := I we may write

x = Γ z (AI.2)

using the same notation as in Eq. (AI.l). Conjugation of SU(1; 1) by T provides an
isomorphism of SU(l; 1) onto SX(2;R),

A>—+A:=ψ(A),

:= TAT~ι. (AI.3)

In general, we will denote elements of SU(l; 1) by capital latin letters and the

corresponding elements in SL(2; R) by the same letter tilded. If A = ( 3

SU(1;\) then A = [ Ύ n „ ^ ) := [ ) e 5L(2;R). It

follows from Eqs. (AI.1)-(AI.3) that the action of SU(l; 1) on Sι corresponds to
the action of SL(2; R) on R as fractional linear transformations,

(A;x) G SL(2;R) x R x ι—> A x := ϊλ
cx + d

of matrices of the form I _{ I of SL{2\ R). We call this subgroup the Poincarέ
\ΰ a J

Only the subgroup of SU(1; 1) which leaves —1 fixed corresponds to well-defined
transformations of R onto itself. This subgroup is mapped by ψ onto the subgroup

ΰ a
subgroup, since it corresponds to translations and dilatations (see below).

We now define the one-parameter subgroups of SL(2; R) which are used in Chap. II
of this work. We also exhibit the corresponding subgroups of SU(l; 1) (obtained by
applying the isomorphism ψ~[).

(i) Translations

x = x+p, x

(ii) Dilatations.

D(t) - x = eΓLΊXt x , x e
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(iii) Special conformal transformations

n G R i—> S(n) := ( l °Λ)e SL(2; R) <—>

S(n) x = — ^ — G R U {00} ,
nx + 1

(iv) Rotations on '.

— sin πί cos πί

0 e~h

~ cos πtx + sin πt _ , Λ _
R(t) x = G R U {00} , x G R.

- sin πt x + cos πt

The following elementary facts about the structure of SX(2;R) will be useful.
SL(2; R) is a simple, real, non-compact Lie group. Each element A of SL(2; R) can
be uniquely decomposed as a product of translations, dilatations and rotations:

0 \ 1 id -c

0 (c2 + dψ2) ^T&\c d

(Iwasawa decomposition). That is, as a manifold,

SL(2;R) = TxDxR, where

— sin πt

are the one-parameter subgroups of translations, dilatations and rotations, respectively.
It follows that SL{2\ R) is connected and that its fundamental group is infinite cyclic.

The Iwasawa decomposition of a special conformal transformation is

/ I 0 \ _ ί\ sin θ cos θ \ /cos

\igθ \)'\0 1 A °

I 0\ ί\ sin θ cos θ \ /cos θ 0 \ /Cos<9 -ύnθ\

) ά cosθ)

for θ G ί — , — J. This implies that the one-parameter subgroups of translations,

dilatations and special conformal transformations generate SL(2; R).
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The following convention will be used to describe intervals on S]. If z, w G Sι

then (z\ w) is defined as the interval on Sι which is covered by walking from z to w
in anticlockwise direction (direction of increasing angle coordinate):

The interval (w; z) is then the complement of (z; w) : (w\ z) = (z; w)'. For
example, S+ = (1; -1) and S_ = (-1; 1) = S'+.

We now introduce two geometric transformations on R and on Sι which will be
of importance,
(i) The reflection about (0; oo) on R. x ι-> ~x.

If we define 7(0;oo) := ί Q l J , then 7(0;oo) x = - x holds, where 7(0;oo) acts

'0 1

1 0
as a fractional linear transformation on R. The image of / ( 0 oo)>

This induces a map of Sι onto itself, 2
V

about the axis passing through — 1 and 1. We define

1 . 2 : = - , which is a reflection
1 0/ ^

0 1

1 0

1

We set I, , so that 7/ x = — corresponding

(ii) Γ/iβ reflection about (-1; l)(?nR. I H - e R U {oc}.

._ / 0 - 1

fractional linear transformation on Sι is given by the matrix 7 (_ r i ) := ψ ι (7(_1.1^) =

J. The map z ^ 7 (_ r z ) z = — is a reflection about the axis going

through ±i.
We define the group of improper Moebius transformations, PSU(1; 1)± as the

group of transformations of S1 generated by the Moebius group and the inversion
Is . This group is obtained from

SU(U
a β

β a
6 M2(C) a

by factoring out the subgroup which corresponds to the identity transformation, that
is, {±1}. Hence,

PSU(U 1)±
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The image of PSU{\\ 1)± by φ = adT is

PSL(2; R)± - SL(2; R)±/{±1} ,

SX(2; R), := I A = I , G M9(R)
\ c d = ±1

SU(l; 1) is a normal subgroup of SU(l; 1)± of order two. Let φ be the outer
automorphism of Sf/(1; 1) defined by

where the bar over A means complex conjugation. It then follows that 5C/(1; 1)± is
the semi-direct product of SU(l; 1) and {1; /g } with respect to φ.

We now proceed to define a reflection about two arbitrary points z, w G 5 1 . Let
N(z.w^ G 5f/(l; 1) be a transformation which maps +1 in z, —1 in to and the interval
(1; -1) = S+ onto the interval (z; w). Then we set

If N^lw^ and N^JW^ are two transformations which map 1 in z, — 1 in w and *?+ onto
(z; w)\ then

maps 5 + onto S+ and leaves ±1 fixed. Hence B = ±D(t) for some t G R and,

since BIs+B~ι = / 5 , it follows that / ^ . ^ is independent of the particular choice

Since / (_ 1 ; 1 ) = i?( l/2)/ ( 1 ; _ υ ^(-l/2) - ~I(U-i) it follows that I{z.w) =

~I(w ,z)Vz> w G S4, so that /(^.w) and /(^.^ induce the same fractional linear
transformation in PSU(lm, 1)±. This transformation is the reflection about z and w.

In the real picture it is easy to compute I^x.y) := φ(I^z.w)), where x and y are the
images of z and w by stereographic projection. If #, y G R, # < y, then

( A L 4 )

whereas,
- 1 2

The group 5C/(1; 1)± is generated by reflections. This fact is most easily checked
in the real picture using Eqs. (AI.4), (AI.5). It is sufficient to write translations,
dilatations and special conformal transformations as products of reflections:

T(p) =

S(n) =
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Appendix II. Proof of Lemma 2.22

Proof of Lemma 2.22. Let U G &. Since SU{\\ 1)± is generated by reflections and

for 7V(α;/3) G S77(l; 1) such that N(a.β) S + = (α;/?), it follows that U e & is
equivalent to

UJj = JjU, UΔf = 2\j*l7 , VJ C S1 . (AII.l)

By the elementary result of Takesaki already used in the proof of Theorem 2.19, every
U £& commutes with Δf, J 7 , Ϋ / c S 1 . Hence U satisfies (AII.l).

This completes the proof of the lemma.

Proof of Lemma 2.24. We only need to prove that if U G & and Ω is cyclic for 33
then U e&.

Since Ω is cyclic for J?, it follows from the Reeh-Schlieder theorem (Corollary
2.8) that Ω is cyclic and separating for ^SU(J), VJ C Sι. For each / c Sι we define
a von Neumann algebra ^i(I) by

J>(J) :=
Since U leaves the vacuum vector invariant Ω is cyclic and separating for ,sβ(I), so
that J 7 , 4}*, the modular conjugation and the modular group associated with .
and Ω, are well defined. Clearly,

But by assumption U commutes with JI and Δf, that is, Jj — J 7 , Δf =
Since β is cyclic and separating for

it follows that Ω is cyclic and separating for

by taking commutants. Since Sj = JjΔ/ = JjΛ/ — Sτ and i? is separating for

W, it follows that ^S(I) = ,/&(I). This is a variant of Lemma 3 of ref. [75], Sect.
10.5. This completes the proof of the lemma.

Proof of Lemma 2.27. It is sufficient to find a conjugation J π satisfying Eq. (2.22).
Clearly, if J\ and J^ satisfy Eq. (2.22) then J\ J% is a unitary operator commuting
with the irreducible representation π of SU(1; 1) and consequently a phase factor.
Hence J π , if it exists, is unique up to an uninteresting phase factor.

We now construct J π explicitly in the real picture. When SU(l; 1) is mapped onto
SL(2; R), the outer automorphism A —> A, A G SU(l; 1) corresponds to conjugation

- 1 0\
I (see Appendix I). The one-parameter subgroups

W):=( c o s* s i n ' ) , mty.= K/2 %
\ - s i n / 9 cos6> / V 0 et/2

_ / c h , / 2
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have infinitesimal generators

dθ
R(θ),

0=0 at
D(t),

ί=0 as
H(s)

s=0

with the Lie algebra relations

[3; α] = 2b, [3; b] = - 2 α , [α; 6] = - -3 .

Let x+ := α — i6, x_ := α + ifr.
An irreducible representation π of SX(2; W) of the holomoφhic discrete series de-

composes into a direct sum of one-dimensional eigenspaces of π(3) with orthonormal
basis vectors {vk}k=nn+2 ^ G Z + satisfying

=ikυk,

= ak vk+2 ,

7r(x_)υk+2 = -ak υk , (AII.2)

where αfe := ̂ [(/c+l) 2 -(n— I) 2 ] 1 / 2 . The commutation relations (2.22) are equivalent

to the infinitesimal relations

π(3) J π = - Jπτr(3), π(x ± ) J π = Jππ(x±)

so that if we define J π as the unique antilinear conjugation which maps vk to υk, one
checks using Eqs. (AII.2) that Eqs. (AII.3) are satisfied. This completes the proof of
the lemma.

Lemma AII.1. Let π be a corepresentation of SU(1; 1)± on 3@, assume that its
restriction π to SU(l; 1) has positive generator of rotations. Then there exists a Hilbert
space 3%', a corepresentation π1 of SU{\\ 1)± on 3%' and an invertible isometry
V : 3@' —> 3%' intertwining π and π' such that
(i) ^ ' = ̂ (8)^1 θ ^ ^ ^ θ . . Θ ^ ^ J oo, dim.*; =i,
(ii) π' =lj ®π] Θl 2 ^π 2 θ. . .0 l o o 0π°°,

where the πι's are disjoint, multiplicity-free direct sums of holomorphic discrete series
representations of SU(\\ 1). 8

(iii) 7t'(Is+) = ^ ( e 1 ) θ J π 2 (e 2 ) 0 . . . 0 Jπoo(e°°), (AII.4)

the notation being just as in Theorem 2.26.

Proof Every direct sum of discrete series representations of SU(1; 1) can be brought
into the form given in (i), (ii), [76], so that we may assume that 3$ = 3$' and π = π'.
It remains only to prove that there exists a unitary operator U commuting with π and
such that

Uit(Is+)U* = π'(Is+).

Choose orthonormal bases eι in ,^ζ and define τt'(Is ) by means of Eq. (AII.4). It
then follows that

π'(Is+MA)π'(Is+) = π(A) \/A e SU(ί; 1).

possibly trivial



Operator Algebras and Conformal Field Theory 635

Hence π(Is+)π'(Is+) commutes with π(SU(U 1)) and by Schur's Lemma,

where W is unitary and

for U% e j&(3#i) and Vπk = 0 e # ' α ) l f f f c l α , ί f t α ) e R. Denning Vπk :=

0e-i/20(fc,α) j ^ α > y := l ! 0 ΐζ i 0 . . . 0 1 ^ (8) yπoo and conjugating both sides

of (AII.5) by V, we are reduced to the case of

where W = Uλ 0 l π i Θ . . . 0 E/^ 0 E/πoo. Let ^ be the orthogonal projection on
^ 0^fπ< and set π ( J 5 + ) , := ^ π ( / 5 )£. .

Since π(Is+) = π(Is+){ 0 . . . 0 τt(ϊs+)oo ^ ^s sufficient to check that each

^ 5 + ) i = ( ^ ® l π θ Λ * ( e < ) i = l , 2 , . . .oo

is unitarily equivalent to J^(el). Squaring both sides of (AII.7) and using the fact
that

one sees easily that

where J(eι) is the conjugation on M% associated to e\ If i < oo, Eq. (AII.8) is
Ui • Ui = 1M , where the bar means complex conjugation. Hence Ui is a symmetric
matrix and can be diagonalized by means of an orthogonal transformation Rt:

where D2 is diagonal. Conjugating both sides of (AII.6) by Ri 0 1 πΐ we see that

) ^ ® l π , ) * = (£>, ® 1 ^ ) ^ ( 6 * )

and we get rid of the remaining phase factors just as we did in Eqs. (AII.5), (AII.6).
If i = oo, then U^ has the spectral decomposition

ι

Jo
eZ£?(λ),

and in this case Eq. (AII.8) implies that E(λ) commutes with J(e°°) for all λ. We
define

°° JO

and obviously,
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Hence conjugating both sides of (AII.7) by W^ 0 1 πoo we obtain

This completes the proof of the Lemma.

Proof of Theorem 2.26. Parts (i)-(iii) follow immediately from Lemma AII.l and (iv)
is an easy consequence of Lemma 2.22, we omit the proof.

Appendix III. Proof of Theorem 4.42

Proof of Theorem 4.42. Ad (i). It follows from Theorem 2.19 that the modular
conjugation Jκ of *A(K) implements antiunitarily the inversion Iκ on 3$. Hence
0κ ° α h - i ( ^ ( - 0 ) = Λ(Jκ ' h~ι J) and the right-hand side of Eq. (4.21) is well-
defined. Since p = {pj}J(Zs

λ *s a representation of ̂ 0 , it follows at once that
pK,h _ {p^h}JcSι satisfies property (i) of Definition 4.1; properties (ii) and (iii) of
Definition 4.1 follow from point (iii) of the theorem which will be proven below.

If A £ Λ(h Iκ - Γ) then

Ph\ i ' ^ = aj ° 0κ ° Pv ° 0κ ° θίh-ι(A) = A,

since pp\^ι^ = id \^pγ It follows that pκ'h is localized in h Iκ I.
Finally, local irreducibility follows from

ik i I))' Π ̂ (h Ίκ-I)

= OLho jκ o Pljκ o αh-i(J(ft /fc I))' Π ̂ (h ΊKΊ)

= «Λ ° 0κ ° P/(^(^ Γ ) ) / Π

y Π jκ o αΛ_i

Ad (ii). By definition,

pK'h(A) = ahojκopo jκ o ah-ι(A), A e J 0 ,

pκ'>h\A) = ah, ojk, opojκ, oah-i(A), i e J 0 .

An easy calculation shows that

(h / K . / K , h~l)]pK'>h'(A),

where s e PSU(1; 1) is chosen in such a way that s = Iκh~ιh'Iκ, e PSU(1; 1).

Ad (iii). Plugging in the left-hand side of Eq.(4.22), the definitions of pKlh

Xj(A) and

of π^κth(§)> w e obtain the right-hand side by direct computation, using the covariance

of p.
Ad (iv). Let h G PSU(U 1) be chosen in such a way that h IjΊ = /. By Lemma

2.1 of ref. [33], it is sufficient to show the existence of a unitary implementing pj on
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.A{J) such that jj(u*) implements pJjh on ̂ ( J ) . Since p is localized in the interval
/, the shifted representation

Pij.h ij(A) = ad^ad^(h))] op(A), A e ^ 0 (Am. 1)

is localized in 13 h Ij / = Ij - I. In this last equation, ad 7 j denotes the

unique extension to PSU(1; 1) of the automorphism h ι—>• Ijhlj of PSU(1; 1).
If 4 G Λ(IjΓ) it follows from Eq. (AIII.l) that

Plj . 7 / U ) = ad[Γp(adJi7(A))*] oPlj,h, IjfIj . ̂ C^)

Since IjΓ ^> Ij Jf = J wt may choose u = Γp(ad7 (/ί))*
Moreover

jj(u*) = jj(Γp(adh(h))) = jj oah.h.f/Γpίa

by the cocycle identity for Γp( •); and

' 1

o j/πf (

by definition of τr^5jfc.

Since the representation /5'7''1 is localized in h • 13 • I, it follows that the shifted
representation

is localized in Ij /. Hence on ̂ (Ij I'),

A = Ph\i

A G ̂ β(IjΓ). This means that

ad jjO/XA) = ad[ΓβJ,h(h>-ιf](A)

so that jj(u*) implements pJ>h on *A(lj /') D ̂ ( J ) . This completes the proof of
the theorem.
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