
Network: Computation in Neural Systems7 (1996) 61–85. Printed in the UK

Coding of time-varying signals in spike trains of linear and
half-wave rectifying neurons

Fabrizio Gabbiani†
Division of Biology, 139-74 California Institute of Technology, Pasadena, CA 91125, USA

Received 15 June 1995

Abstract. The encoding of time-varying stimuli in linear and half-wave rectifying neurons is
studied. The information carried in single spike trains is assessed by reconstructing part of the
stimulus using mean square estimation methods. For the class of models considered here, the
mean square error in the reconstructions and estimates of the rate of information transmission
are computed analytically. The optimal encoding of stimuli having statistical properties of
natural images predicts a change in the temporal filtering characteristics with mean firing rate.
This change relates to those observed experimentally at the early stages of visual processing.
The transmission of information by model neurons is shown to be fundamentally limited to
a maximum of 1.13 bit/spike and it is conjectured that nonlinear processing is necessary to
explain higher rates which have been observed experimentally in certain preparations. In spite
of the fact that single neurons might not transmit information efficiently, a substantial part of
a time-varying stimulus can be recovered from single spike trains. In particular, our results
demonstrate that a small number of ‘noisy’ neurons can carry precise temporal information in
their spike trains.

1. Introduction

The neuronal coding and processing of sensory information is a subject which is presently
being actively investigated [1, 22, 5, 30, 8]. Recently, methods of stochastic estimation
theory [35, 24] have been applied to study the coding of random stimuli in the spike trains of
various peripheral sensory neurons [5, 28]. By presenting repeatedly to an animal a stimulus
drawn from a given probability distribution and recording the action potentials of a single
cell, it is possible using stochastic estimation methods to reconstruct part of the stimulus
from the recorded spike occurrence times, and hence to assess the information carried by
the cell about the stimulus. The reconstruction algorithm and the more traditional Wiener
kernel method [21] can be understood as complementary tools to investigate the information
processing performed by a cell on its input signals. In both cases, one expresses the variable
of interest as a Volterra series,

y = F0 + F1(z) + F2(z, z) + · · · (1.1)

where in the Wiener approachy is the mean firing rate of the cell (or the intracellular
membrane voltage), whilez is the stimulus, which consists of wide-band white noise (see
figure 1(A), withz = s andy = OM ). When applying the reconstruction algorithm,y is the
stimulus which was presented to the cell andz is the spike train, from which one attempts
to reconstruct the stimulus (see figure 1(B), withz = x and y = sest). The main goal
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of the Wiener approach is to compute the kernelsF0, F1, F2, . . . which provide a compact
characterization of the processing performed by the neuron. The accuracy of the model
obtained is assessed by computing the mean square error between the output (1.1) and the
experimental output. It turns out that the kernels obtained from reconstructions are related
in a complicated way to the encoding mechanisms of the cell (see section 5) and one is
therefore mainly interested in the mean square error between the stimulus and estimated
stimulus. As illustrated in figure 1(B), the mean square error in the reconstructions will
depend on the preprocessing of the stimulus by the cell. If, for example, the stimulus
contains frequencies higher than those encoded by the neuron, any information about them
will be lost in the spike train and these will contribute significantly to the mean square error
in the reconstructions (see section 2 and [11]). Hence, the choice of the bandwidth of the
stimulus plays an important role and will significantly affect the calculated mean square
error whereas it does not play any role when computing Wiener kernels (as long as the
stimulus bandwidth is wide enough). Ideally, one would therefore like to pick a stimulus
ensemble having a cut-off frequency matched to the frequencies that the cell encodes.
While the bandwidth of a cell could be defined from a Wiener kernel model, we will show
in sections 2 and 5 that an ‘effective bandwidth’ can also be determined from the signal-
to-noise ratio of wide-band white noise reconstructions. It is then possible to measure the
encoding capabilities of the cell by performing reconstructions of stimuli having a cut-off
frequency matched to it.

An alternative way of characterizing reconstructions is to compute the mutual
information rate between the experimental and estimated stimulus (1.1). The only quantity
which can easily be computed,ILB (see section 3 and appendix A; [32, 5, 28, 11]), is a
lower bound on the rate of information transmission. It follows from the results derived in
sections 3, 4 and 5 that comparingILB with a different information theoretic quantity, the
ε-entropy (or rate-distortion function),Iε allows one to draw some interesting conclusions
on the ‘efficiency’ of single neurons to convey information on the presented stimulus.

The main subject of this work is to study the encoding of time-varying stimuli in
the spike trains of simple model neurons by using the reconstruction method summarized
above. We use a simplified integrate-and-fire neuron whose mean firing rate is proportional
to a linearly filtered and half-wave rectified version of the stimuluss(t). To implement
the variability which is usually observed in response to several presentations of the same
stimulus, the model possesses a random threshold (see figure 1(C)): the somatic current
qs(t), which is obtained froms(t) by linear filtering and half-wave rectification is integrated
to yield the somatic membrane voltage (the spontaneous activity of the cell is set to zero).
Once threshold is reached, a spike is generated, the voltage is reset to zero after a refractory
period and a new threshold value is drawn from a fixed probability distribution. The
simplification performed in section 4 consists of setting the refractory periodδ equal to zero
and choosing an exponentially distributed random threshold.

The choice of this model in motivated for two reasons. Firstly, there exists a number
of neurons for which the approximation of linear filtering and half-wave rectification is
expected to be meaningful. For example, the X-pathway in the cat (and monkey) visual
system from retinal ganglion cells to simple cells in striate cortex has been shown to
be satisfactorily described in this way (see, e.g., [29, 7, 10]), although deviations from
linearity and half-wave rectification are expected [14, 25]. As shown in [11], this model also
allows the investigation of some aspects of nonlinear processing. The second reason lies
in mathematical simplicity: by choosing a vanishing refractory period and an exponentially
distributed threshold it follows that the spikes of our neurons are generated independently
of each other (i.e. are Poisson, see appendix B). Furthermore, since we consider only the
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Figure 1. Schematic representation of the traditional Wiener kernel approach, the reconstruction
method and the neuron model used in the subsequent sections. (A) In the Wiener approach, the
experimental output is used to compute the kernels which constitute a model of the transformation
performed by the neuron on the stimulus. The model validity is assessed by computing the mean
square error between the experimental and predicted outputs. (B) In reconstructions, the output
spike trains are used as an input to the algorithm which estimates the stimulus. Preprocessing
of the stimulus by the neuron can strongly influence the outcome of the reconstructions. (C)
The neuron model is an integrate-and-fire neuron with random threshold: the stimulus is filtered
by F (we assume linear filtering and half-wave rectification) and the outputqs is added toq0

(representing the background activity of the cell, in the followingq0 is set to zero). The somatic
currentq̄s is integrated to yield membrane voltageV and when the threshold is crossed a spike
is fired, the voltage is reset to zero after a refractory periodδ and the threshold is set to a new
random value (the model used is a simplified version of this general model, see text for details).

encoding of Gaussian stimulus ensembles with zero mean, we can treat simultaneously
the spike trains of two half-wave rectified cells, one encoding the positive and the other
the negative variations of the stimulus (such as ON and OFF cells, for example) and,
by using this trick, simplify the algebra. This allows us to compute exactly the cross-
correlation between the spike trains and stimulus and the power spectrum of the spike trains
(see section 4) and subsequently to investigate the encoding properties of these models
analytically (see section 5). We show in particular that the reconstruction of a time-varying
stimulus depends on the firing rate of the model neurons. While the mean square error
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decreases with increasing mean firing rate, the information transmitted is fundamentally
limited: it is not possible for the model neurons considered here to transmit more than
π/4 log(2) ∼= 1.13 bit/spike of information about a time-varying white noise stimulus. These
analytical results are only valid for the simplifications discussed above, but more general
threshold distributions and stimulus ensembles, as well as a non-vanishing refractory period,
could be investigated using computer simulations.

In section 6 two specific examples are considered: neuron models which low-pass filter
their inputs and a simplified model of LGN cells. In the latter case we consider the encoding
of Gaussian white ensembles as well as of stimuli having the power spectrum of natural
visual scenes (as recently measured in [8]). This allows us to investigate the effect of noise
on neuronal coding and to show that the optimal encoding of natural visual stimuli predicts
a transition from low-pass to band-pass temporal filtering as a function of mean firing rate.
Similar changes have been reported in the literature for retinal ganglion cells and LGN cells
[31, 29].

The implications of these results and their relation to earlier work will be addressed in
the concluding section of the paper. Most of the proofs will be relegated to appendix C.

2. Linear mean square estimation of a stimulus from a spike train

Let s0(t) be a random stimulus presented to the animal andx0(t) the spike train recorded
from a cell. We assume thats0(t) and x0(t) are (real-valued) stochastic processes which
are jointly (weakly-) stationary (that is, their joint one- and two-point correlation functions
are time-translation invariant) and thats0(t) andx0(t) have finite variance,〈|s0(t)− s0|2〉 =
〈|s0(0) − s0|2〉 = σ 2 < ∞, 〈|x0(t) − λ|2〉 = 〈|x0(0) − λ|2〉 < ∞, whereλ = 〈x0(t)〉 is the
mean firing rate ands0 = 〈s0(t)〉 the mean value of the stimulus. In these equations, the
brackets,〈·〉, denote average over the joint stimulus and spike train ensemble.

If s(t) = s0(t)−s0 andx(t) = x0(t)−λ are the stimulus and spike train with their mean
value subtracted, we define the auto-correlations and cross-correlation of the stimulus and
spike train asRss(τ ) = 〈s(t)s(t +τ)〉, Rxx(τ ) = 〈x(t)x(t +τ)〉 andRsx(τ ) = 〈s(t)x(t +τ)〉,
respectively. A linear estimatesest(t) of the stimulus given to the spike train is obtained by
setting

sest(t) =
∫ +∞

−∞
dt1 h(t1) x(t − t1)

for a square integrable functionh. The filterh is to be chosen in such a way as to minimize
the mean square error between the stimuluss and the estimatesest,

ε2 = 〈|s(t) − sest(t)|2〉 = 〈|s(0) − sest(0)|2〉 (2.1)

where the last equality follows by stationarity. The orthogonality principle (see, e.g., [24],
propositions V.C.2 and VII.C.1) implies that the optimal filterh satisfies the equation

Rsx(τ ) = (h ? Rxx)(−τ) (2.2)

where the convolutionf ? g of two functionsf andg is defined by

(f ? g)(t) =
∫ +∞

−∞
dt1 f (t1)g(t − t1) =

∫ +∞

−∞
dt1 f (t − t1)g(t1) = (g ? f )(t).

Equation (2.2) is solved by Fourier transformation. For a square integrable functionh we
define the Fourier transform ofh through

ĥ(ω) =
∫ +∞

−∞
dτ h(τ)eiωτ h(τ ) = 1

2π

∫ +∞

−∞
dω ĥ(ω)e−iωτ
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and for the auto-correlation and cross-correlation functions of the stimulus and spike train we
setSss(ω) = R̂ss(ω), Sxx(ω) = R̂xx(ω) andSsx(ω) = R̂sx(ω). We restrict our attention to
stimuli and spike train ensembles for which these functions are well defined and continuous.
Furthermore, we assume the stimulus to be bandwidth limited,Sss(ω) = 0, if |ω| > ωc,
whereωc = 2πfc is the cut-off frequency and

0 < ε < Sss(ω) < C 0 < ε < Sxx(ω) < C if ω ∈ 1c = (−ωc; +ωc)

for some positive constantsε andC.
From equation (2.2) we obtain the optimal filterh in Fourier space,

ĥ(ω) =


Ssx(−ω)

Sxx(ω)
if ω ∈ 1c

0 if ω /∈ 1c.
(2.3)

The solution (2.3) of the linear estimation problem is known as the non-causal Wiener
filter (see, e.g., [24], section V.D.1). The filterh depends only on second-order statistical
properties of the ensemble; hence different stimuli and spike train ensembles could lead to
the same optimal linear decoding strategy.

Remark 2.1. (i) If the stimulus or the spike train sample functions contain deterministic
components other than their mean value, these need to be subtracted as well in order for
the preceding arguments to remain valid ([35], section 2.4).

(ii) We do not impose a causality constraint on the filterh although it could be
implemented in several ways [11].

The difference betweensest(t) ands(t) is the ‘noise’ contaminating the reconstructions,
n(t) = sest(t) − s(t). The noise has zero mean and its auto-correlation function is given by
Rnn(τ ) = Rss(τ )−(h?Rsx)(τ ) (using equation (2.2)). The power spectrumSnn(ω) = R̂nn(ω)

is obtained by Fourier transformation,

Snn(ω) = Sss(ω) − |Ssx(ω)|2
Sxx(ω)

(2.4)

using definition (2.3) of the filterh. If we define the signal-to-noise ratio as

SNR(ω) = Sss(ω)

Snn(ω)
> 1 (2.5)

we can express the mean square errorε2 in terms of the power spectrum of the stimulus
and the signal-to-noise ratio:

ε2 = Rnn(0) = 1

2π

∫
1c

dω
Sss(ω)

SNR(ω)
. (2.6)

The larger the signal-to-noise ratio, the smaller the mean square error. If, on the other hand,
the signal-to-noise ratio is equal to 1 in some frequency band1 ⊂ 1c, the entire power
of the signal in this frequency band contributes to the mean square error. In the extreme
case where the spike train is completely unrelated to the presented stimulus,SNR(ω) = 1,
∀ω ∈ 1c, the mean square error coincides with the variance of the stimulus ensemble,
ε2 = σ 2. Hence, the relative mean error,εr = ε/σ , represents an adequate measure of the
accuracy of the reconstructions in the time domain, withεr = 1 if the reconstruction of the
signal is not better than chance andεr → 0 in the limit of perfect reconstructions.
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Definition 2.1. Let the stimulus be wide-band white noise. Ifωmax > 0 is the frequency
at which the signal-to-noise ratio is maximal,SNR(ωmax) > SNR(ω) for ω ∈ 1c,
then the effective bandwidth of frequencies encoded by the cellis defined as the interval
1e = (ωmax − ωe1; ωmax + ωe2) aroundωmax for which

SNR(ω) − 1

SNR(ωmax) − 1
> rmin.

The minimal valuermin will be set to 0.05 in the following.

Remark 2.2. It will be shown in proposition 5.1 that, ifrmin = 0.5, definition 2.1 coincides
with the usual definition of bandwidth for the model neurons studied in section 4.

3. Rate of information transmission

A lower bound on the rate,I (s; sest), at which the reconstructions transmit information on
the stimulus can be derived fors(t) Gaussian. Sinces(t) was assumed to be bandwidth-
limited, it is completely determined by the corresponding discrete time processs̃ = {s̃n}n∈Z,
where

s̃n = s

(
nπ

ωc

)
n ∈ Z

according to Shannon’s sampling theorem (see [15], theorem 2.6.2). Lets̃est = {s̃estk}k∈Z
and ñ = {ñk}k∈Z denote the discrete time processes (sampled at the same frequencyωc/π

as s̃) corresponding ton andsest and letñG = {ñG
k }k∈Z be the Gaussian process having the

same covariance as̃n = {ñk}k∈Z. If we defineILB = h̄(s̃) − h̄(ñG), whereh̄(s̃) and h̄(ñG)

are the entropy rate of̃s and ñG respectively, thenI (s; sest) is bounded below by

I (s; sest) = I (s̃; s̃est) = h̄(s̃) − h̄(ñ|s̃est)

> h̄(s̃) − h̄(ñ) > ILB .

The last inequality follows because the entropy rate of a stationary processñ is always
smaller than the entropy rate of the corresponding stationary Gaussian processñG (see [15],
theorem 1.8.4).

From the entropy rate of a Gaussian process (see [15], theorem 2.4.1), we obtain

ILB = 1

4π log(2)

∫
1c

dω log

(
Sss(ω)

Snn(ω)

)
(in bit s−1). (3.1)

Several equivalent formulae for this lower bound are known and are summarized in
appendix A.

If the mean square error in the reconstructions isε2, it will be of interest to compare
ILB to the absolute lower bound given by

Iε = inf
ρ

{I (s; ρ)|〈(s(t) − ρ(t))2〉 6 ε2}.
Iε is called theε-entropy or rate-distortion function in information theory. By definition it
follows thatIε1 6 Iε2 ⇔ ε1 > ε2; this need not be the case forILB.

For a bandwidth-limited, stationary Gaussian process [16],

Iε = 1

4π log(2)

∫
1c

dω log max

(
Sss(ω)

2πθ2
, 1

)
(in bit s−1) (3.2)

where the constantθ2 is uniquely determined by∫
1c

dω min

(
Sss(ω)

2π
; θ2

)
= ε2. (3.3)



Coding of time-varying signals in spike trains 67

Equations (3.2) and (3.3) allow us to computeIε numerically, although a closed form
expression will not be available in general.

A direct comparison ofIε andILB is possible if the stimulus is white.

Proposition 3.1. Let the stimulus ensemble be bandwidth-limited Gaussian white noise
andε2 be the mean square error in the reconstructions. Then

(i) the ε-entropy is given by the following formula:

Iε = −2fc

log(2)
log(εr) (in bit s−1)

(ii) ILB > Iε .

Proof. See appendix C. �
In other words, the mutual informationI (s; sest) can be expected to be larger than the

absolute lower bound determined byIε . ILB andIε will be compared for several examples
in section 6.

Finally, if λ is the mean firing rate of the cell, we define a lower bound on the rate of
information transmitted per spike and theε-entropy per spike according toIS = ILB/λ and
IεS = Iε/λ.

4. Spike trains of linear and half-wave rectifying model neurons

In this section we study the spike trains generated by a simplified model whose mean firing
rate is proportional to a linearly filtered and half-wave rectified version of the stimulus. It
follows from earlier results [12] that this model is equivalent to an integrate-and-fire neuron
with exponentially distributed random threshold and for which the refractory period has
been set to zero. These results are summarized in appendix B. The assumption of a random
threshold represents a convenient way to take into account the variability of spike trains to
the presentation of identical stimuli which is usually observed experimentally. However,
this assumption is not meant to imply that variability is solely due to the spike generating
mechanism. In many cases, there is good evidence that this is not the case (see, for example,
[20]).

Let s(t) be Gaussian, as specified in the previous sections. We will encode a linearly
filtered version ofs(t),

qs(t) =
∫ +∞

−∞
dt1 K(t − t1)s(t1)

∫ +∞

−∞
dt1 |K(t1)|2 < ∞ (4.1)

in the spike trains of two neurons, labelled±1. The first neuron encodes the positive part
of the signal,qs(t) > 0 and the second neuron the negative part of the signal,qs(t) < 0.
We first formulate the encoding model for a finite time interval(−T ; T ) and then compute
the correlation functions in the limitT → ∞.

Remark 4.1. (i) Causality requiresK(t) = 0 for t < 0.
(ii) The Fourier transformK̂(ω) of K(t) will be assumed to be continuous and bounded,

|K̂(ω)| < C, for ω ∈ 1c.

Let an evente = (t1, n1; . . . tl , nl) consist of a collection of time pointsti ∈ (−T ; T ),
i = 1, . . . , l, recording the occurrence of spikes, and for each time pointti let ni be a
discrete variable,ni ∈ {−1; 1}, specifying which of the two cells fired. The probability of
an evente given the sample stimuluss is defined to be

P(e|s) = Ql(t1, n1; . . . tl, nl|s)
= Cp(t1, n1|s) · · ·p(tl, nl|s) Q0(s) = C (4.2)
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where the normalization constantC remains to be determined. In equation (4.2) we have
made the assumption that each individual spike is generated independently of other spikes.

The probability densityp(t, ±1|s) is defined as

p(t, ±1|s) = ±qs(t)θ(±qs(t)) (4.3)

with qs(t) given by equation (4.1) and whereθ(·) denotes the Heaviside function,

θ(x) =
{

0 if x < 0

1 if x > 0.

From definition (4.3) it follows that neuron 1 will have a non-vanishing probability density
of firing at time t only if qs(t) is positive, whereas neuron−1 will have a non-vanishing
probability density of firing only ifqs(t) is negative.

It is easy to see that

p(t, 1|s) + p(t, −1|s) = |qs(t)| (4.4)

p(t, 1|s) − p(t, −1|s) = qs(t). (4.5)

The constantC in equation (4.2) is obtained from the normalization condition for the
probability density functionsQi ,

Q0(s) +
∞∑
i=1

1

i!

∑
n1,...,ni=±1

∫
· · ·

∫ T

−T

dt1 · · · dti Qi(t1, n1; . . . ti , ni |s) = 1. (4.6)

By definition, eachQi(·|s) is totally symmetric in its arguments. Plugging definitions
(4.2) and (4.3) in (4.6) and using equation (4.4) to compute

∑
n1=±1 p(t1, n1|s), we obtain

C = e−N̄ , with N̄ = ∫ T

−T
dt |qs(t)|.

The mean number of action potentials fired by neuron 1 in the interval(−T ; T ) is given
by

N̄1 = e−N̄
∞∑
i=1

1

i!

∑
n1,...,ni=±1

∫
· · ·

∫ T

−T

dt1 · · · dti

( i∑
j=1

θ(nj )

)
p(t1, n1|s) · · ·p(ti, ni |s)

= e−N̄
∞∑
i=1

N̄ i−1

(i − 1)!

( ∫ T

−T

dt1 qs(t1)θ(qs(t1))

)
=

∫ T

−T

dt1 qs(t1)θ(qs(t1)).

Hence, the instantaneous firing rate of neuron 1 at timet is given byλ1 = qs(t)θ(qs(t)).
Similarly, λ−1 = −qs(t)θ(−qs(t)) is the instantaneous firing rate of neuron−1 and
λ1 + λ−1 = |qs(t)| the instantaneous firing rate of both cells under the driving stimulus
s.

To each evente = (t1, n1; . . . tl , nl) we associate the samplex(t, e),

x(t, e) =
l∑

i=1

niu(t − ti) x(t, e) = 0 if l = 0 (4.7)

of the stochastic processx(t) which represents the spike trains of both cells. The function
u(t) describing a single spike is positive, square integrable and

∫ +∞
−∞ dt u(t) = 1. In

subsequent sections we will consider the limit caseu(t) = δ(t), whereδ(t) is the Dirac
delta function. Multiplication of each spikeu(t − ti) by ni in equation (4.7) allows us to
distinguish which of the two cells fired at timeti .
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Proposition 4.1. Let s(t) be a Gaussian stimulus ensemble, as specified in the preceding
sections, andx(t) the spike trains generated by two model neurons driven by the stimulus
s. In the limit T → ∞,

〈s(ta)x(tb)〉 = ((u ? K) ? Rss)(tb − ta) (4.8)

〈x(ta)x(tb)〉 = λK(u ? ur)(tb − ta) + [((u ? ur) ? (K ? K r)) ? Rss ](tb − ta) (4.9)

where the averages on the left-hand side of equations (4.8), (4.9) are taken over the stimulus
and spike train ensembles, we have definedur(t) = u(−t), K r(t) = K(−t) and

λK = 〈|qs(t)|〉 = 1

π

( ∫
1c

dω |K̂(ω)|2Sss(ω)

)1/2

(4.10)

is the mean firing rate of both cells averaged over the stimulus ensemble.

Proof. See appendix C. �

5. Properties of linear reconstructions

The optimal non-causal Wiener filter (2.3) decoding the spike trains of our model neurons
is obtained by Fourier transforming equations (4.8) and (4.9),

Ssx(ω) = û(ω)K̂(ω)Sss(ω) (5.1)

Sxx(ω) = |û(ω)|2(λK + |K̂(ω)|2Sss(ω)) (5.2)

so that choosingu(t) = δ(t), we obtain

ĥ(ω) = K̂(−ω)Sss(ω)

λK + |K̂(ω)|2Sss(ω)
. (5.3)

The following result relates definition 2.1 with the usual notion of bandwidth.

Proposition 5.1. Let the stimulus ensemble be bandwidth-limited Gaussian white noise.
The signal-to-noise ratio in the reconstructions satisfies the equation

SNR(ω) − 1

SNR(ωmax) − 1
= |K̂(ω)|2

|K̂(ωmax)|2
. (5.4)

Proof. This follows from equations (2.4), (2.5), (5.1) and (5.2). �

Remark 5.1. (i) It follows from equation (5.4) that definition 2.1 coincides with the usual
definition of bandwith forrmin = 0.5 (i.e. 1e is the range of frequencies for which the
attenuation in the gain is less than−3 dB).

(ii) Typically, single neurons never achieve the performance of electronic devices and
the engineering cut-off criterion has to be relaxed when applied to such systems. With
rmin = 0.05 the cut-off criterion corresponds to an attenuation of−13 dB. The choice of a
lower bound of 5% for the normalized signal-to-noise ratio in equation (5.4) is necessarily
arbitrary, but proved to be appropriate in this theoretical work. In an experimental situation,
one might want to choose a higher value depending on the accuracy of the numerical estimate
for the signal-to-noise ratio.

The encoding of time-varying stimuli in our model neurons is characterized by the
following three properties.
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Property 5.2. Let the stimulus ensemble be Gaussian and bandwidth-limited. The mean
square error,ε2, in the reconstructions is given by

ε2 = 1

2π

∫
1c

dω
λKSss(ω)

λK + |K̂(ω)|2Sss(ω)
(5.5)

and is a monotone decreasing function of the mean firing rateλK with

ε2 → σ 2 (λK → 0) and ε2 → µ2 =
∫

1

dω Sss(ω) (λK → ∞)

where1 = {ω|ω ∈ 1c and |K̂(ω)|2 = 0} ⊂ 1c.

Proof. See appendix C. �
Remark 5.2. In the limit of low firing rates, the mean square error converges to the variance
of the stimulus, which is the worst possible error (see section 2). AsλK → ∞ the model
neurons are able to encode arbitrarily well the stimulus in the range of frequencies1c–1

which are transmitted by the cell.

Property 5.3. Let the stimulus be Gaussian and bandwidth-limited.
(i) The lower bound,ILB, on the rate of information transmission is given by

ILB = 1

4π log(2)

∫
1c

dω log

(
1 + 1

λK

|K̂(ω)|2Sss(ω)

)
(in bit s−1). (5.6)

As a function of the mean firing rateλK , ILB is a monotone increasing function satisfying

ILB → 0 (λK → 0) and ILB → ∞ (λK → ∞).

(ii) The lower bound on the information transmitted per spike,IS, is a monotone
decreasing function of the mean firing rateλK with

IS → π

4 log(2)
∼= 1.13 bit/spike (λK → 0) and IS → 0 (λK → ∞). (5.7)

Proof. See appendix C. �
Remark 5.3. Remarkably, the limitλK → 0 is independent of the statistics of the stimulus
ensembleSss(ω) and of the linear filterK(t) preceding the spiking mechanism of our model
neurons.

Property 5.4. Let the stimulus ensemble be bandwidth-limited Gaussian white noise and
ε2 be the mean square error in the reconstructions.

(i) As a function of the mean firing rate,λK , Iε is monotone increasing with

Iε → 0 (λK → 0) Iε → −ωc

2π log(2)
log

(
µ2

σ 2

)
(λK → ∞).

(ii) The ε-entropy per spike,IεS, is a monotone decreasing function of the mean firing
rateλK with

IεS → π

4 log(2)
∼= 1.13 bit/spike (λK → 0) IεS → 0 (λK → ∞). (5.8)

Proof. See appendix C. �
Remark 5.4. (i) In contrast toILB, Iε remains finite when some frequency band of the
stimulus ensemble is not encoded.

(ii) For Gaussian white noiseIε and ILB converge to the same limit asλK → 0; this
result will be discussed in section 7.
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If the second-order statistics of the temporal stimuli to be encoded is known, it is of
interest to determine which filterK preceding the spiking mechanism will minimize the
mean square error in the reconstructions. This amounts to minimizing the functional

ε2(K) = 1

2π

∫
1c

dω
λKSss(ω)

λK + |K̂(ω)|2Sss(ω)
. (5.9)

As shown by property 5.2, this minimization problem is only meaningful under the constraint
that the firing rate of the cellλK is held constant,λK = λ0, with λ0 fixed.

Proposition 5.5. Let the stimulus be bandwidth-limited and Gaussian with power spectrum
Sss(ω). The optimal filter gain|K̂(ω)|2 which minimizes the functional (5.9) under the
constraint of a fixed mean firing rateλ0 is given by

|K̂(ω)|2(ω) =

 λK

α−1/2Sss(ω)1/2 − 1

Sss(ω)
if ω ∈ 11

0 otherwise

(5.10)

where the Lagrange multiplierα and the domain11 = {ω|α−1/2Sss(ω)1/2 > 1} ⊆ 1c satisfy
the constraint equation

1

π2

∫
11

dω Sss(ω)|K̂(ω)|2(ω) = λ0. (5.11)

Proof. See appendix C. �

Remark 5.5. We do not consider the problem of finding a causal filterKc(t) whose gain
|K̂c(ω)| approximates (5.10). This problem has been extensively treated in the literature
(see, for example, [23], section 12-1; [17], sections 14-8 and 14-9). An example showing
how a causal solutionKc(t) is computed from|K̂c(ω)| is treated in [8].

6. Examples

The results obtained in section 5 will now be applied to two specific examples. In both
cases, we first compute the effective bandwidth of frequencies encoded by the models and
then the relative error in the reconstructions of stimuli having a cut-off frequencyfc matched
to the effective bandwidth. We impose a minimal cut-off frequency of 15 Hz for the stimuli
when the bandwidth of model neurons is smaller than 15 Hz. The introduction of a lower
bound on the frequency content of the stimulus prevents its time fluctuations from becoming
arbitrarily slow.

Example 6.1. The simplest biologically relevant assumption forK consists of low-pass
filtering [11]. The effective bandwidth of an exponential low-pass filtering neuron,

K(t) =
{

αe−t/τ if τ > 0

0 otherwise
(6.1)

is given by

SNR(ω) − 1

SNR(0) − 1
= 1

1 + ω2τ 2

(ωe1 = ωmax = 0) and with fe = ωe2/2π the criterion (5.4) corresponds tofe =√
19/2πτ Hz. Table 1 givesfe for values ofτ which are expected to lie in the physiological
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range. If the stimulus is Gaussian, white with a cut-off frequencyωc and variance
σ 2 = Rss(0), the mean square errorε2 can be calculated using elementary integral identities:

ε2 = σ 2

ωc

(
ωc − 1

τ

γ√
1 + γ

arctan

(
τωc√
1 + γ

))
γ = α2τ 2σ 2

ωc
(6.2)

(see equations (4.10) and (5.5)). The lower boundILB is obtained similarly after a partial
fraction expansion and integrating by parts:

ILB = 1

2π log(2)

[
ωc log

(
1 + γ

1 + ω2
cτ

2

)
+ 2

τ

√
1 + γ arctan

(
τωc√
1 + γ

)
− 2

τ
arctanτωc

]
.

(6.3)

Table 1. Effective bandwidth1e = (0; fe) of low-pass filtering model neurons as a function of
the time constant of low-pass filtering,τ .

τ (ms) fe (Hz)

10 69
20 35
50 14

100 7
200 3.5

The optimal filter encoding the white noise stimulus is obtained from proposition 5.2.
Setting11 = 1c and solving the constraint (5.11) forα1/2 we obtain from (5.10)

|K̂(ω)|2 = πλ2
0

2σ 2
∀ ω ∈ 1c. (6.4)

It follows from equation (6.4) that for the optimal filtering neuronILB = Iε , whereas for
low-pass filtering neurons,ILB > Iε (see figure 2(B)).

Figure 2(A) plots the relative mean error at various firing rates for low-pass filtering
neurons with time constantsτ = 10 and 200 ms (see table 1) as well as for the optimal
filtering neuron in response to a Gaussian white stimulus (see equations (6.1) and (6.4)).
The cut-off frequencyfc is equal tofe (figure 2(A), top panel) or set to 15 Hz when
fe < 15 Hz (figure 2(B), bottom panel). It can be concluded that a single low-pass filtering
neuron encodes at least 10–30% of a time-varying white noise signal in its optimal frequency
band. Furthermore, in the first case (τ = 10 ms) the mean relative error compares well
with the absolute lower bound set by the optimal filtering model. For a time constant of
200 ms, the effective bandwidth is strongly reduced (see table 1) and the performance starts
to differ significantly from the ideal one. Nevertheless, a low-pass filtering neuron with a
time constant of 200 ms is still able to encode between 10 and 30% of a time-varying white
stimulus having a bandwidth of 15 Hz. As shown in figure 2(B),Iε/2 varies between 0 and
a maximum of 40 bit s−1 (for τ = 10 ms and a firing rate of 100 Hz). As expected, the
optimal filtering neuron always transmits more information about the stimulus than the low-
pass filter model neurons and, just as for the mean relative error, the difference between the
ε-entropies of these two models increases withτ , in parallel with the decrease in effective
bandwidth. In the worst case,τ = 200 ms,Iε/2 ranges from a minimum of 3 bit s−1 to a
maximum of 10 bit s−1.

It follows from equation (6.4) that in order to reconstruct a white stimulus as accurately
as possible, the linear filterK(t) should pass all frequenciesω ∈ 1c equally well. This is
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Figure 2. (A) Relative error (εr, filled squares) in the reconstructions of a white stimulus as
a function of mean firing rate (λK/2) for two low-pass filtering model neurons. The cut-off
frequency of the signal coincides with the effective bandwidthfe for τ = 10 ms and is set
to 15 Hz for τ = 200 ms. The empty squares report the relative mean error for the optimal
encoding of the same white noise stimulus (see equation (6.4)). (B) Comparison of the lower
bound for the rate of information transmission (ILB/2, empty squares) and theε-entropy (Iε/2,
filled squares) for same low-pass filter models in response to a white stimulus. The circles report
the lower bound for the rate of information transmission and theε-entropy of the optimal filter
model (ILB = Iε ) in response to the same stimulus.

consistent with the fact that the spike trains of our model neurons are Poisson processes;
in this case the noise introduced by the spike generation mechanism is independent of
frequency. If the power spectrum of the input signal is not white, the situation changes
drastically, as is illustrated in the following.

Example 6.2. The white stimulus considered in example 6.1 is not likely to be typical
of stimuli encountered in a natural environment. Although little information is presently
available on the temporal statistics of natural visual or auditory stimuli, it has been recently
reported [8] that the temporal power spectrum of natural time-varying images (in the limit
of zero spatial frequency) obeys a quadratic power law decay∼ 1/ω2 similar to the decay in
spatial power observed for static images [9]. This experimental result motivates our second
example,

Sss(ω) = µ

1 + τ 2ω2
(6.5)

where we have introduced a cut-off at low temporal frequencies to regularize the divergence
1/ω2 → ∞ asω → 0. The time constantτ is chosen equal to 1500 ms, close to the value
which approximates the power spectrum reported in [8] (see [8], figure 1, top). Note also
that we do not take into account the noise term of [8], equation (13) since an ‘effective
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noise’ is already present in the spiking mechanism of our model neurons, see the discussion
in section 7.
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Figure 3. (A) Gain of the optimal filter model as a function of temporal frequency for a stimulus
ensemble whose spectral power density decays quadratically with temporal frequency. The filters
are shown for firing rates ofλK/2 = 5, 12.5, 25, 50, 75 and 100 Hz (from the smallest to the
largest gain), respectively (note the logarithmic temporal frequency scale; the units for the gain
of the filter are arbitrary and correspond toµ = 1, see main text). (B) Relative error (εr) in the
reconstructions of a white (empty squares) and a natural stimulus (filled squares) for the optimal
encoding filter model; the bandwidth of the input signal coincides with the effective bandwidth
of the cell (which depends on the mean firing rate, see table 2;fc = 15 Hz if fe < 15 Hz). (C)
Mean relative error for the gain of an LGN cell as measured experimentally [29] and fitted in
[8]. The bandwidth of the stimulus is equal to the effective bandwidth of the cell (18 Hz). (D)
Comparison between the LGN gain and the gain of the optimal filter model at a firing rate of
50 Hz (the effective bandwidths of the optimal and LGN filter models practically coincide at
this firing rate, see table 2). (E), (F) Comparison of the lower bound on the rate of information
transmission (ILB/2, filled symbols) and theε-entropy (Iε/2, empty symbols) in response to
white noise (squares) and natural stimuli (circles). (E) and (F) show respectively information
transmission of the optimal filtering neuron and of the LGN filter model.
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Table 2. Transition from low-pass to band-pass for the optimal filter model. The columns give
respectively the mean firing rate (λ0/2) of each model neuron, the effective cut-off frequency,
the frequency at which the gain|K̂(f )| is maximal and the ratioρ = |K̂(fpeak)|/|K̂(0.1)|.

λ0/2 (Hz) fe (Hz) fpeak (Hz) ρ

5 3 1.3 2.2
12.5 6 2.7 3.1
25 9 4.7 4.0
50 16 8.3 5.4
75 23 11.6 6.3

100 29 14.8 7.1

The optimal filter gain encoding the Gaussian stimuli (6.5) is given by

|K̂(ω)|2 = λ0

µ
(1 + τ 2ω2)

(
τ

2

2ω0 + π2λ0

arcsinh(τω0)

1

(1 + τ 2ω2)1/2
− 1

)
(6.6)

for |ω| < ω0 and |K̂(ω)|2 = 0 for |ω| > ω0. The constantω0 entering this equation is
determined numerically from the constraint (5.11). We see from equation (6.6) thatµ only
plays the role of an overall scaling factor so that we may setµ = 1 in the following.
The effective bandwidth depends on the mean firing rate of the model neuron. Table 2
gives the values offe = ωe2/2π (ωe1 = 0) for a range of firing frequencies, as determined
numerically from equation (5.11). Figure 3(A) shows the modulus|K̂(ω)| for different
mean firing rates. The overall shape of the optimal encoding filter changes with mean firing
rate making a transition from low-pass to band-pass at high firing rates. This is further
quantified in table 2 which reports the frequency at which the gain is maximal and the
ratio of maximal gain to gain at a fixed frequency of 0.1 Hz. The reason for this transition
is clear: at low firing rates the dynamic range of the model cell is limited and low-pass
filtering the signal leads to better reconstructions by eliminating signal power in a frequency
band where the cell cannot encode the signal. As the mean firing rate rises, the dynamic
range increases and higher stimulus frequencies can be encoded. These need, however, to
be amplified with respect to low frequencies, due to the rapid decay in signal power with
temporal frequency. After reaching a peak frequency, amplification becomes undesirable
because it also amplifies noise. Similar effects have been studied in mean firing rate models
by Atick and collaborators [3, 19, 8]. Figure 3(B) shows the mean relative errors in the
reconstructions of white and natural stimuli. In both cases, the power is limited to the
optimal frequency band of the model (see table 2,fc = 15 Hz if fe < 15 Hz). The relative
mean error was computed numerically for the white stimulus (using equation (5.5)) and
from equation (6.6) for the natural ensemble.

For comparison, figure 3(C) reports the relative mean error in the reconstructions of
similar stimuli when the filter gain is chosen to correspond to that of an LGN cell [29] as
derived in [8]. Since the power spectrum of equation (6.5) has an added low-frequency
cut-off compared to the spectrum given in [8], we modified the whitening filter equation of
Dong and Atick accordingly,

|K̂(ω)| = η

µ1/2

√
1 + τ 2ω2

(1 + ω2/ω2
n + 1/τ 2ω2

n)
3/2

(6.7)

in order not to underestimate the encoding of low-frequency components by the model.
In equation (6.7) the parameterωn = 2πfn is taken from [8], withfn = 5.5 Hz. The
parametersµ and τ are those given for equation (6.5) andη is a scaling factor which
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determines the mean firing rate. The effective bandwidth computed from equation (6.7) is
18 Hz (1e = (0; 18 Hz)) andfc is set to this value in figure 3(C). As can be seen from the
figure, at the same firing rate both filters reconstruct the natural stimulus much better than
the white one. This is to be expected from the results derived in example 6.1. Furthermore,
the LGN filter encodes white stimuli better than the optimal filter at low firing rates (this is
due to the low cut-off frequency of the optimal filter, see table 2) but performs significantly
worse than the optimal filter to encode natural stimuli. At low firing rates, its relative mean
error is higher (10–20%) than that of the optimal filter and at high firing rates (50 Hz or
more) the errors become comparable but its bandwidth is smaller. Indeed, the shape of
the LGN gain differs from the optimal one as illustrated in figure 3(D). Nevertheless, both
filters are able to encode between 10–50% of a time-varying white stimulus provided that
the bandwidth is limited to 15–30 Hz. In figures 3(E) and (F),ILB and Iε are plotted for
these two model neurons and for the same ensembles as in figures 3(B) and (C). In both
cases, the model neurons transmit more information when the stimulus is white than when it
is taken from the natural ensemble, the difference being as large as 15 bit s−1 for firing rates
of 100 Hz. In spite of this, the mean square errors in the reconstructions are always lower
for the natural ensemble than for the white one (see figures 3(B) and (C)). Furthermore, the
lower boundILB is slightly larger thanIε in the case of white stimuli, but the difference is
pronounced for natural stimuli. In the example of the LGN filter model,Iε ranges from 0.4
to 6.5 bit s−1 when the firing rate varies between 5 and 100 Hz whereasILB ranges from
3.5 to 17 bit s−1 for the same mean firing rates.

7. Discussion

In this concluding section, we discuss in turn the neuron models used, the quantification
of reconstructions and information coding in the light of the results obtained in sections 5
and 6.

7.1. The neuron models

Clearly, the model of linear and half-wave rectifying neurons with exponential threshold
defined in section 4 is an idealization of biological neurons. Linearity, for example, is
observed in a range of stimulus parameters, but additional compression and saturation effects
usually come into play at a certain level of response [2]. While half-wave rectification has
been observed to describe adequately the centre response dynamic of retinal X cells [34],
in the case of simple cells an expansive nonlinearity might lead to a better description
of experimental data [14]. Finally, the assumption that single spikes are generated
independently of each other has to be modified if one is to take into account the experimental
interspike interval statistics observed in LGN or retinal ganglion cells [18, 33]. Nevertheless,
the models studied here represent a reasonable starting point to study the encoding of time-
varying stimuli in single spike trains. The assumption of linear and half-wave rectification
has been widely used to fit experimental data (see, e.g., [29, 7]) or in theoretical studies
[8] and the additional assumption of independently generated spikes constitutes the simplest
generalization of mean firing rate models which is able to take into account single action
potentials. Furthermore, the resulting models have the considerable advantage of being
amenable to analytical solutions, as demonstrated in the preceding sections. Finally, the
connection to more general integrate-and-fire neuron models, explained in appendix B,
implies that it is possible to improve our models to include all the effects mentioned above
and to study them by computer simulations.
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7.2. Quantification of the reconstructions

As shown in sections 2, 5 and 6, it is possible to quantify the quality of reconstructions
using mean square error by first determining an ‘effective bandwidth’ and then using stimuli
restricted to the effective bandwidth of the cell. The effective bandwidth defined in section 2
was shown to coincide with the usual definition in the case of linear and half-wave rectifying
neurons (proposition 5.1). Hence, it plays a similar role in the reconstruction algorithm to
the bandwidth defined from a first-order Wiener kernel.

The ε-entropy is an information theoretic quantity likeILB but in contrast to it,Iε is
an absolute lower bound: it is not possible by any means to approximate the signals with
mean errorε by transmitting less information thanIε . For a Gaussian white noise stimulus
ensembleILB > Iε holds (proposition 3.1) and, although no proof is available for more
general ensembles, this inequality is expected to remain true (as illustrated, for example, in
figures 3(E) and (F)). The quantityILB − Iε represents the minimal amount of information
that the neuron transmits in addition toIε to achieve a given fidelity criterionε. Since it is
possible to achieve the same performance by transmitting onlyIε , one may regardILB −Iε as
representing a lower bound on the ‘inefficiency’ of the neuron in reproducing the stimulus
to a mean accuracyε. Alternatively, we may define a ‘coefficient of coding efficiency’
ceff = I (sest; s)/Iε > 1, taking the value 1 if the neuron transmits exactly the minimal
amount of information needed to approximate the stimulus to accuracyε andceff > 1 if the
neuron is transmitting more than the ideal minimum. It follows from proposition 3.1 that
ceff > cLB > 1, wherecLB is defined bycLB = ILB/Iε . From properties 5.3 and 5.4 one
concludes thatcLB will approach the theoretical lower bound of 1 in the limit of vanishing
firing rates. As the mean firing rate increases, the difference betweenILB andIε increases
as well (see figure 2(B)) andcLB ranges from 1.17 (τ = 10 ms) to 1.45 (τ = 200 ms)
for λK/2 = 100 Hz. Interestingly,cLB depends on the choice of the stimulus ensemble,
as illustrated in figures 3(E) and (F). When the stimulus is white, the value ofcLB for the
LGN and optimal filters is not significantly different from those given above, whereas in
the case of the natural stimulus ensemblecLB can be as high as 1.85 (optimal filter) and
2.6 (LGN filter) for firing rates ofλK/2 = 100 Hz. In these cases the model neurons
are transmitting at least twice as much information than ideally needed to approximate the
stimulus with the same accuracy. It will be of interest to compute values ofcLB directly
from experimental data. These theoretical results are complementary to those obtained in
[28]. In that study, the authors comparedILB to the entropy of the spike train (computed
by assuming a finite temporal resolution for the spike occurrence times) and showed that
ILB represents 50–60% of the available spike train entropy. This demonstrates that single
cells were operating at more than half of their theoretical possibilities, but does not put the
reconstruction performance on an absolute scale.

As illustrated in figures 3(E) and (F), the rate of information transmitted by model
neurons, as well as the quality of reconstructions, will in general depend on the choice
of the stimulus ensemble. BothIε and ILB are higher for white than for natural stimuli.
In contrast, the quality of reconstructions is considerably worse for the white than for the
natural stimulus ensemble (see figures 3(B) and (C)).

7.3. Signal processing of linear and half-wave rectifying model neurons.

Linear and half-wave rectifying neurons are in principle able to encode arbitrarily well a
time-varying Gaussian stimulus (see property 5.2; withµ = 0 we obtainε2 → 0 and
ILB → ∞ as λK → ∞). However, for model parameters which are physiologically
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plausible, the mean error in the estimation is not expected to be negligible (see figures 2
and 3). These models are not able to transmit more than 1.13 bit/spike of information about
the stimulus, a result which is independent of the particular linear processing preceding the
spiking mechanism (see properties 5.2 and 5.3). Quantities of information transmitted per
spike which are compatible with this upper bound have been measured in the fly visual
system [27]. On the other hand, rates of information as high as 3 bit/spike have been
reported experimentally in certain preparations [28]. Assuming that our results can be
extrapolated to real neurons, they would imply that some kind of nonlinear processing is
underlying these high rates.

By imposing a principle of optimal computation for the encoding of signals having
the statistics of natural time-varying images [8], we were able to predict a transition from
low-pass filtering at low firing rates to band-pass filtering at high firing rates for the optimal
encoding by a model neuron (see figure 3(A) and table 2). A transition of the same nature
has been described experimentally in retinal ganglion cells [31] and similar effects were
reported for LGN cells [29]. We wish to emphasize that a similar prediction could be
obtained by starting from different principles of optimal computation than the one used
here. For example, optimal decorrelation as applied in [8] is also expected to lead to a
transition from low-pass to band-pass filtering. The interest of the derivation presented here
lies in the fact that it relies on optimal encoding in single spike trains and does not use
a mean firing rate model as its starting point. The optimal filter derived in example 6.2
is similar but not identical to the LGN filter obtained in [8] (see figure 3(D)). No attempt
has been made here to fit the experimental data (different optimal filters could be obtained
by considering different threshold statistics) and the assumption of Poisson spikes is most
probably an oversimplification for LGN cells [18].

As shown in figures 2 and 3, model neurons are able to encode an appreciable portion of
the time-varying changes of random stimuli in their spike trains. From these examples, one
can read that approximatively 20% of a white noise stimulus, having 20 Hz of bandwidth,
could be recovered from a single cell. In the case of the LGN model neuron, substantially
better estimates were obtained when reconstructing the natural stimulus ensemble (see
figure 3). This is due to the fact that this ensemble contains substantially less power at
high temporal frequencies than the white ensembles otherwise tested (see equation (6.5)).
Clearly, the LGN model used is schematic and better estimates of the information effectively
transmitted would require a refined analysis, but these results open the interesting possibility
that single LGN neuron spike trains might be able to encode more than 50% of a time-
varying natural stimulus. This hypothesis can be tested experimentally. In any case, the
fact that a single model neuron is able to encode 20% of a time-varying stimulus having
an approximative bandwidth of 20 Hz implies that only a small number of cells is needed
to carry precise temporal information. In order to recover an estimate to 10% accuracy,
averaging overN = ((1 − 0.2)/0.1)2 = 64 spike trains of independent neurons will be
sufficient. This estimate can be regarded as conservative since we are considering here
white input signals, but we have also neglected the fact that single cells might encode
a DC component in their spike trains and that there will usually be correlations between
the activity of the cells. By committing spikes to encode the mean value of the signal,
one expects that the capacity to register time-varying changes will be degraded. Similarly,
correlations between single neurons which can be on the order of 10–20% (see [36] and
references given therein) will also limit reconstruction accuracy.

Finally, we would like to emphasize that the results presented here were derived using
single spike trains of ‘noisy’ neurons. In our models, spikes do not possess any particular
timing precision or structure besides the modulation in firing probability induced by the
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stimulus. The stimulus is reliably encoded in their mean firing rate and single spike
trains always carry less information. It has recently been proposed [30], on the basis
of physiological and psychophysical evidence, that information might be carried in the
visual cortex of primates by fundamental signalling units consisting of pools of 100 ‘noisy’
neurons. Our results demonstrate that such an encoding scheme is theoretically possible. It
remains to be explained how such a distributed system extracts and processes the information
which is in principle available in single neuronal spike trains.
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Appendix A. Equivalent formulae for the lower bound ILB

Let n1(t) be the ‘noise’ in the reconstructions which is uncorrelated to the stimuluss(t),

sest(t) = (g ? (s + n1))(t) (A.1)

where the functiong(t) is chosen so that

〈s(t1)n1(t2)〉 = 0 ∀ t1, t2 ∈ R. (A.2)

Equations (A.1) and (A.2) definen1(t) andg(t) uniquely.

Proposition A.1. The lower boundILB can be computed using either of the following two
formulae:

ILB = −1

4π log(2)

∫
1c

dω log(1 − ĝ(ω)) (A.3)

ILB = 1

4π log(2)

∫
1c

dω log

(
1 + Sss(ω)

Sn1n1(ω)

)
(A.4)

whereSn1n1(ω) is the power spectrum ofn1(t).

Remark A.1. (i) Equation (A.3) was first used by Steinet al [32] to estimate the rate of
information transmitted by integrate-and-fire models stimulated with Gaussian white noise.

(ii) Equation (A.4) was used by Bialek and collaborators in [5, 28].
(iii) The function ĝ(ω) is known as thecoherence functionin system identification

theory [4].

Proof. From (A.1) and (A.2) it follows that

〈s(t1)sest(t2)〉 = (g ? Rss)(t2 − t1). (A.5)

On the other hand,

〈s(t1)sest(t2)〉 = (h ? Rsx)(t2 − t1). (A.6)

Hence, combining (A.5) and (A.6),g ? Rss(τ ) = h ? Rsx(τ ), so that after Fourier
transformation,̂g(ω)Sss(ω) = ĥ(ω)Ssx(ω), or equivalently,

ĝ(ω) = |Ssx(ω)|2
Sxx(ω)Sss(ω)

for ω ∈ 1c (A.7)
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where we have used definition (2.3) of the filterh. It is now easy to show using
equation (2.4) that

Sss(ω)

Snn(ω)
= 1

1 − ĝ(ω)
.

This completes the proof of equation (A.3).
We sett2 − t1 = τ and compute both sides of

〈(g ? n1)(t1) (g ? n1)(t2)〉 = 〈(sest(t1) − (g ? s)(t1))(sest(t2) − (g ? s)(t2))〉. (A.8)

Expanding the right-hand side and computing each term separately, we obtain

〈sest(t1)sest(t2)〉 = ((hr ? h) ? Rxx)(τ ) 〈(g ? s)(t1) sest(t2)〉 = ((gr ? h) ? Rsx)(τ )

〈sest(t1)(g ? s)(t2)〉 = ((gr ? h) ? Rsx)(τ ) 〈(g ? s)(t1)(g ? s)(t2)〉 = ((g ? gr) ? Rss)(τ ).

whereas for the left-hand side we have

〈(g ? n1)(t1)(g ? n1)(t2)〉 = ((g ? gr) ? Rn1n1)(τ )

where we have definedRn1n1(τ ) = 〈n1(t)n1(t + τ)〉.
Fourier transforming (A.8), we obtain after use of equation (A.7),

|ĝ(ω)|2Sn1n1(ω) = |ĥ(ω)|2Sxx(ω) − |ĝ(ω)|2Sss(ω)

and it follows from this latter equation that

Sn1n1(ω) = 1 − ĝ(ω)

ĝ(ω)
Sss(ω) (A.9)

where we have again used equation (A.7). Equations (A.9) and (A.3) imply
equation (A.4). �

Appendix B. Relation between integrate-and-fire models with random threshold and
Poisson models

B.1. Model description

The model of integrate-and-fire neurons which we consider was described in figure 1(C).
The input signals(t) is transformed by some operatorF (which represents processing of the
signal prior to the spike generating mechanism) into a positive somatic current. In section 4,
we assumedF to consist of linear filtering followed by half-wave rectification, with each
of the positive currentsq±

s (t) driving one model neuron. In this appendix, we consider a
single neuron and denote byqs(t) the positive somatic current.

The currentqs(t) is integrated to yield the somatic voltagey(t). Once the membrane
potentialy reaches the thresholdk(t) > 0, a spike is fired and the membrane voltage is
reset to zero after a refractory periodδ. The threshold variablek(t) is constant between two
spikes at timesti andti+1, k(t) = ki , ti < t 6 ti+1 and is updated after each spike according
to a probability distributionp(k). The discrete stochastic process{kn}n∈Z describing the
threshold could be chosen to have more complicated properties (e.g. [12]), we will however
consider onlykn’s which are independent and identically distributed random variables.
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B.2. Equivalence with modulated Poisson processes

We assume that the refractory period is equal to zero (δ = 0) and that the threshold is
exponentially distributed,p(k) = µe−µk. If the injected current isqs(t) we show that the
output spike trains coincide with the spike trains generated by a Poisson process with mean
rateµqs(t).

Since the output spikes are recursively determined from the threshold distribution by

kn =
∫ tn

tn−1

dt qs(t) n = 1, 2, . . . (B.1)

the probability density that the neuron will fire action potentials at timet1, . . . , tn in the
interval (0; T ) is given by

p(t1, . . . , tn) = p(k1, . . . , kn)

∣∣∣∣det

(
∂kj

∂ti

)∣∣∣∣ P(ρ < kn+1).

Hereρ = ∫ T

tn
dt qs(t), P(ρ < kn+1) is the probability that the random variablekn+1 > ρ and

the joint probability densityp(k1, . . . , kn) for the threshold variablesk1, . . . , kn is given by

p(k1, . . . , kn) = µn exp

(
− µ

n∑
i=1

ki

)
= µn exp

(
− µ

∫ tn

0
dt qs(t)

)
after use of equation (B.1). Furthermore,

P(ρ < kn+1) =
∫ ∞

ρ

dk µe−µk = exp

(
− µ

∫ T

tn

dt qs(t)

)
.

Sinceki = ki(ti−1, ti) = ∫ ti
ti−1

dt qs(t) we have

∂ki

∂ti
= qs(ti)

∂ki

∂ti−1
= −qs(ti−1)

and

det

(
∂kj

∂ti

)
= qs(t1) · · · qs(tn).

Summing up these results,

p(t1, . . . , tn) = exp

(
−

∫ T

0
dt µqs(t)

)
µqs(t1) · · ·µqs(tn)

which is exactly the probability density of events for a Poisson process with rateµqs(t).

Appendix C. Proofs

Proof of proposition 3.1. (i) is obtained by first determiningθ2 from the power spectrum
of the white noise and the constraint (3.3) and then solving forIε in equation (3.2). (ii)
follows immediately from Jensen’s inequality ([13], paragraph 6.14).

Proof of proposition 4.1. We verify only equations (4.9) and (4.10). Equation (4.8) follows
in a similar manner and is easier to prove. We start from∫

De x(ta, e)x(tb, e)P (e|s)

=
∞∑
i=1

1

i!

∑
n1,...,ni=±1

∫
· · ·

∫ T

−T

dt1 · · · dti x(ta, e)x(tb, e)Qi(t1, n1; . . . ti , ni |s)
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= e−ν̄
∞∑
i=1

1

i!

∑
n1,...,ni=±1

∫
· · ·

∫ T

−T

dt1 · · · dti

( i∑
k,j=1

nknju(ta − tk)u(tb − tj )

)
×p(t1, n1|s) · · ·p(ti, ni |s)

where the left-hand side represents a convenient symbolic notation for the right-hand side.
The i terms withtk = tj in the innermost sum and thei(i − 1) terms withtk 6= tj have to
be treated separately,∫

De x(ta, e)x(tb, e)P (e|s)

= e−N̄
∞∑
i=1

1

i!

∑
n1,...,ni=±1

∫
· · ·

∫ T

−T

dt1 · · · dti

( i∑
j=1

n2
j u(ta − tj )u(tb − tj )

)
×p(t1, n1|s) · · ·p(ti, ni |s)

+e−N̄
∞∑
i=2

1

i!

∑
n1,...,ni=±1

∫
· · ·

∫ T

−T

dt1 · · · dti

( i∑
j,k=1
j 6=k

nku(ta − tk)nju(tb − tj )

)
×p(t1, n1|s) · · ·p(ti, ni |s)

and by performing first a change of integration variables and then passing the sum over
n1, . . . , ni under the integral sign in both terms, we obtain∫

De x(ta, e)x(tb, e)P (e|s) =
∫ T

−T

dt1 u(ta − t1)u(tb − t1)|qs(t1)|

+
∫ ∫ +T

−T

dt1 dt2 u(ta − t1)u(tb − t2)qs(t1)qs(t2)

where we have used equations (4.4) and (4.5) to compute the sums overnj and nk,
j, k = 1, . . . i. It is now easy to take theT → ∞ limit and to compute〈x(ta)x(tb)〉 from
this last equation, by averaging over the stimulus ensemble. Since the stimulus ensembles

is stationary,λK = 〈|qs(t1)|〉s is independent oft1 and the first term of the right-hand side
is seen to be equal toλK(ur ? u)(tb − ta). For the second term we obtain after the change
of variablest1 → t1 + ta, t2 → −t2 + tb,∫ ∫ ∫ ∫ +∞

−∞
dt1 dt2 dt3 dt4 u(ta − t1)u(tb − t2)K(t3) K(t4)〈s(t1 − t3)s(t2 − t4)〉s
= [ur ? (u ? (K r ? (K ? Rss)))](tb − ta).

Combining these two equations we obtain the desired result.
The mean firing rate of the two neurons averaged over the stimulus ensemble can

be computed by noticing that sinces(t) is Gaussian, the random variableqs(t) =∫ +∞
−∞ dt1 K(t1)s(t − t1), is also Gaussian fort ∈ R. It has zero mean and its variance

is σ 2
qs

= 〈|qs(t)|2〉s = Rqsqs(0), where the auto-correlation ofqs(t) is given by

Rqsqs(τ ) = ((K r ? K) ? Rss)(τ ). (C.1)

Sinceqs(t) is Gaussian,

〈|qs(t)|〉s = 2
∫ +∞

0
dx

1√
2πσqs

xe−x2/2σ 2
qs = 2σqs√

2π
= 2√

2π
[((K r ? K) ? Rss)(0)]1/2

using equation (C.1). Equation (4.10) is obtained by rewriting this latter expression in terms
of Fourier transforms.



Coding of time-varying signals in spike trains 83

Proof of proposition 5.2. Equation (5.5) is obtained directly from (2.4), (2.6) and (5.3).
Scaling the filterK by a positive constantη, K̂(ω) → K̂(η)(ω) = ηK̂(ω), η > 0, is
equivalent to scaling the mean firing rateλK by the same constantη: λK → λ

(η)

K = ηλK .
We therefore consider the mean square error as a function ofη:

ε2(η) = ε2(K(η)) = 1

2π

∫
1c

dω
λKSss(ω)

λK + η|K̂(ω)|2Sss(ω)
. (C.2)

By exchanging integral and limit (see [26], theorem I.10) we obtain from equation (C.2),
limη→0 ε2(η) = σ 2.

In the limit η → ∞ we have

lim
η→∞ ε2(η) =

∫
1

dω Sss(ω)

since

lim
η→∞

(
λKSss(ω)

λK + η|K̂(ω)|2Sss(ω)

)
=

{
0 if ω ∈ 1c − 1

Sss(ω) if ω ∈ 1.

Finally, using the Leibnitz rule (see [6], (17.14)),

d

dη
ε2(η) = 1

2π

∫
1c

dω
d

dη

(
λKSss(ω)

λK + η|K̂(ω)|2Sss(ω)

)
< 0.

This completes the proof.

Proof of propositions 5.3 and 5.4. The proofs are completely similar to the proof of
property 5.2. The inequality

y

1 + y
< log(1 + y) y > 0

is needed to show thatIS is monotone decreasing and the limits (5.7) and (5.8) follow from
l’H ôpital’s rule and equation (4.10).

Proof of proposition 5.5. Let

K̂1(ω) = 1

λ
1/2
K

K̂(ω) |K̂1(ω)|2 = 1

λK

|K̂(ω)|2

and λ̃0 = π2λ0, X(ω) = |K̂1(ω)|2. Minimizing (5.9) under the constraintλK = λ0 is
equivalent to minimizing

ε̃2(X) =
∫

1c

dω
Sss(ω)

1 + X(ω)Sss(ω)
(C.3)

under the constraints

λ̃(X) =
∫

1c

dω X(ω)Sss(ω) = λ̃0 X(ω) > 0. (C.4)

To find a stationary point of (C.3) under the first constraint of (C.4) we introduce a Lagrange
multiplier α and the functionalF(X, α),

F(X, α) = ε̃2(X) + αλ̃(X) (C.5)

=
∫

1c

dω G(X, ω) + α

∫
1c

dω H(X, ω)

G(X, ω) = Sss(ω)

1 + X(ω)Sss(ω)
H(X, ω) = X(ω)Sss(ω)
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so that the solution of the variational problem (C.5) is equivalent to solving (C.3) under the
first constraint of (C.4). Solving the Euler–Lagrange equation corresponding to (C.5) for
X(ω), we obtain the two possible solutions,

X(ω) = ±α−1/2Sss(ω)1/2 − 1

Sss(ω)
ω ∈ 1c

but we conclude from the second constraint of (C.4) that only the positive sign is allowed
in front of α−1/2. If we let 11 = {ω|α−1/2Sss(ω)1/2 > 1} ⊆ 1c, our final solution is

X(ω) =


α−1/2Sss(ω)1/2 − 1

Sss(ω)
if ω ∈ 11

0 otherwise

(C.6)

where the Lagrange multiplierα and the domain11 have to satisfy the constraint equation∫
11

dω Sss(ω)X(ω) = λ̃0. Rewriting this in terms of|K̂(ω)|2 we obtain proposition 5.5.
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