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Abstract Computational analysis of behavioural and neural data is nowadays an 
essential part of neuroethology, allowing an ever deeper understanding of how natural 
behaviour and neural activity are interrelated at the molecular, cellular and network 
level. The range of computational techniques applied in neuroethological research is 
currently so broad as to preclude an exhaustive survey in a succinct chapter. Here, we 
focus on a specific approach termed Bayesian statistical modelling that has proven to 
be a powerful method for relating neural activity to natural behavioural performance. 
As we illustrate in a specific example, this approach naturally dovetails with classic 
neural coding concepts such as population vector codes. It is also flexible enough to 
be applicable to a broad range of neuroethological questions.
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4.1  Introduction

During the past decades, neuroscience and neuroethology have experienced a 
dramatic increase in the availability of methods to analyse neural data. Yet, compu-
tational data analysis has long been an integral part of this area of research, as 
attested by many historical examples. Hodgkin and Huxley, for instance, used 
numerical integration of differential equations to study the propagation of action 
potentials in the giant squid axon. In another classical study, Katz and colleagues 
applied probability theory to derive the properties of quantal synaptic release at the 
neuromuscular junction. Recent progress in neural modelling has been in large part 
fueled by an exponential increase in computing power, the widespread availability 
of powerful numerical and simulation packages, such as Matlab and NEURON, as 
well as the need to cope with increasingly complex neural data sets spanning mul-
tiple spatio- temporal scales. The interested reader will find a comprehensive treat-
ment of modelling techniques in Gabbiani and Cox [2010], including many 
worked-out numerical and programming examples.

In this chapter, we focus on a specific topic that has attracted renewed attention 
and that is pertinent to neuroethology: Bayesian statistical modelling. The Bayesian 
framework allows the computational analysis of neural data in the context of the 
animal’s environment using rigorous mathematical methods. In the following sec-
tions, we start with a brief introduction to Bayesian modelling before illustrating its 
use to analyze the neural coding of natural sounds in the barn owl. The figures of 
this chapter were generated using short Matlab programs that are available online 
and will help the reader assimilate the material covered. The name of these pro-
grams is specified at the end of the figure legends using the notation: (name.m).

4.2  Bayesian Statistical Modelling

The Bayesian approach to statistics interprets probabilities as measures of belief 
instead of empirical frequencies for event occurrence (Doya et al. 2007, Hoff 2009). 
This framework centred on belief allows one to model decision making in a princi-
pled manner by (1) taking into account the sensory input experienced by an organ-
ism, (2) integrating previous information (e.g. memories or biases) and (3) deciding 
on an appropriate motor output, based on this information.

In the Bayesian framework, the state of the outside world may be conceived as a 
model indexed by a variable θ. In general, the variable θ will be multidimensional. 
The main task of the organism is to infer from sensory data, d, an estimate of the 
current state of the world, q̂ , so as to react with an appropriate motor output. The 
sensory data could for instance be the firing rate of sensory neurons activated in the 
current state of the world. Because the transduction of external stimuli into neural 
signals is noisy, due to both intrinsic and extraneous variability, and because the 
processing of neural signals is noisy as well, the sensory data d will usually be a 
random variable determined by θ and characterized by the conditional distribution 
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p(d | θ). The main function on which decisions are based is the posterior distribution 
p(θ | d) which gives the conditional probability of the model parameter θ given the 
observed data d. To calculate this posterior distribution, we use Bayes’ rule 
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where p(d | θ) is the conditional probability of the data given the model parameter, θ 
(Fig. 4.1).

In the field of statistics, the probability distribution p(d | θ) is also called a genera-
tive model since it maps outside stimuli into sensory neural responses (in our context). 
The probability distribution of the model parameter θ, p(θ), is the prior distribution 
that is related to properties of the outside world. The experimenter will often be able 
to manipulate these priors. The distribution of responses irrespective of the stimuli (or 
of the current state of the world) is called the marginal distribution, p(d). This mar-
ginal distribution normalizes Eq. (4.1) such that the integral of the posterior distribu-
tion over θ is unity. When we fix the data d and let θ vary, the generative model p(d | θ) 
becomes what is known as the likelihood function in statistics. One conventional 
method of estimating θ consists in selecting the value, q̂ , that maximizes the likeli-
hood given the data. This decision rule is called “maximum likelihood”. The analo-
gous principle in the Bayesian case consists in selecting the maximum of the posterior 
distribution, or “maximum a posteriori” (MAP) estimate. Alternatively, another valid 
rule consists in computing the mean of the posterior distribution. The use of these 
decision rules will be illustrated in the following sections.

Often, knowing p(d) is not necessary as we only need to know the dependence of 
the posterior on the model parameter, and p(d) only acts as a normalizing constant. 
This is exploited by computing the product of the likelihood function and the prior 
distribution and ignoring the marginal distribution, 
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q of q^
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Fig. 4.1 Bayesian statistical models. In the Bayesian scheme, the observer gathers data from the 
outside world which is modelled based on parameters represented by θ. The data, d, is combined 
with prior knowledge on the parameters, θ, to infer a posterior probability distribution for the 
parameters using Bayes’ rule [Eq. (4.1)]. This in turn allows to determine an estimate for the model 
parameters
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since p(d) does not depend on θ. This last equation also makes clear that the Bayesian 
framework uses both the likelihood and the prior distribution of θ to arrive at an informed 
estimate q̂ . To render these general remarks more concrete, we turn to the example of 
sound localization in barn owls as recently described in Fischer and Peña [2011].

4.3  Sound Localization in Barn Owls

In the wild, owls use sound localization to detect and locate prey in the dead of 
night. Psychophysically,  the  time  lag between a sound picked up  in each ear but 
generated by a single source allows the owl to reconstruct the horizontal direction 
(or azimuth) to the source (Fig. 4.2a). A second and distinct cue, the interaural level 
difference allows the owl to reconstruct the elevation of the source but will not be 
considered further here (Konishi 2003). The time lag between sound arrival at both 
ears is called the interaural time difference (ITD), and is related to the azimuth 
direction of the sound source as shown in Fig. 4.2b. The horizontal axis shows the 
source direction centred on the owl’s sagittal plane, while the vertical axis shows the 
corresponding ITD. This relationship is obtained by fitting the function 

 ITD( ) sin( )q wq= A  (4.3)

to head related transfer function data as a function of the source angle θ. Such a fit 
yields A = 260 μs and ω = 0. 0143 rad/ °  as the fitted parameters (Fischer and 
Peña 2011). From this graph, one notices immediately that the inverse mapping 
from ITD to source direction is not always one to one. Hence, the owl must some-
how pick one of the possible states of the world consistent with the observed ITD. 
Ethologically, we know that it does so by biasing its choice to the one straight ahead 
(Hausmann et al. 2009, Knudsen et al. 1979). This bias can be quantified using 
Bayesian statistics.

We begin by asking what knowledge of the world the owl already has and what 
it wishes to know. In the sound localization problem, it knows approximately (see 
below) the ITD of the source, but wishes to know its associated direction θ. In 
Bayesian terms, we say that the owl wishes to infer the probability of θ given that it 
knows the ITD, or equivalently, the probability distribution of θ given the ITD, 
p(θ | ITD). This is exactly the posterior distribution in Eq. (4.1) with ITD replacing 
d. In order to use Bayes’ rule, we need a generative model and a prior distribution.

The sound reaching each ear may be corrupted by noise in the environment, like 
that caused by wind; in addition, the neural computation of ITD is noisy as well. 
Thus, we use 

 ITD( ) sin( ) ,q wq= +A W  (4.4)
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where W is a Gaussian random variable with zero mean and standard deviation 
σg = 41. 2 μs. This gives the generative model 
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The corresponding likelihood function is illustrated as the dashed curve of Fig. 4.2c 
for a specific value of the ITD. Notice that it is bimodal with two identical peaks. 
Hence the owl cannot simply select from this model a single most likely θ, accord-
ing to the usual “maximum likelihood” principle.
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Fig. 4.2 Bayesian estimation of sound source. (a) Schematic illustration of the coordinate system 
used to describe sound direction, characterized by azimuth and elevation angles. A sound source 
with a horizontal direction or azimuth of 0 °  lies straight in front of the animal. A sound source with 
an azimuth different from 0 °  will arrive at a different time at the two ears. (b) Model of ITD as a 
function of azimuth fitted from experimental data. The dashed horizontal line indicates zero ITD. 
(c) The likelihood function or generative model for the θ, p(ITD | θ), is illustrated as the dashed 
black line (ITD = 218. 9 ms). The grey line is the prior distribution expected by the owl, while the 
black line and grey area curve is the posterior probability distribution. The dotted black line repre-
sents the owl’s sound source direction estimate ( ˆ .q = °49 7 ). (d) Estimated azimuth as a function 
of true (presented) azimuth based on the model described in the main text. The dotted line denotes 
model performance while the dashed line denotes ideal performance. Note the bias towards central 
positions exhibited by the model. The upper left inset illustrates the relation between the azimuthal 
angle θ and its associated unit vector u(θ) on the unit circle (dashed) (bayesian.m)
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A bias for one peak over the other has to be introduced to make a unique choice. 
This bias is derived from the prior distribution for the model parameter, θ, which we 
model as a Gaussian distribution of the form 
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(4.6)

where σp = 23. 3 °  is the standard deviation. In this case, the mean is zero which 
reflects the owl’s strong bias for sound sources at the front, while tending to ignore 
possible sources from the sides. The prior distribution is shown in Fig. 4.2c as the 
grey curve. Note that θ is a valid angle on the unit circle only when θ ∈ ( − 180 ° , 180 ° ], 
and we make the approximation that the probability mass is negligible outside these 
bounds. This prior is consistent with the known interactions of barn owls and their 
potential preys (Edut and Eilam 2004).

Applying Eqs. (4.5) and (4.6) to Eq. (4.2), we can compute the shape of the pos-
terior distribution, shown as the grey area curve in Fig. 4.2c. With the posterior 
distribution, the owl can ask how probable the various source directions θ are given 
a measured ITD and use this information to make a behaviourally relevant choice. 
Making  this  choice  involves  using  a  decision  rule  to  reduce  a  distribution  over 
source directions p(θ | ITD) to a single estimated source direction q̂ . One decision 
rule that is consistent with the behavioural data is to take an average of unit vectors 
weighted by their posterior probability of the form 

 
ˆ( ) ( ) ( | ) ,q q q qITD ITD= ∫ u p d

 
(4.7)

where u(θ) is the two-dimensional unit vector for each angle (Fig. 4.2d, inset) and 
the integral is taken over the unit circle. This is also referred to as the circular mean. 
The result of this estimation procedure for a number of azimuth directions is given 
by the black points in Fig. 4.2d. As a reference, the black dashed line represents the 
perfect estimation. Note that the algorithm exhibits a bias towards central positions, 
that is, it tends to underestimate the true azimuth direction when the source is posi-
tioned at eccentric positions. This bias has been shown to exist in the barn owl by 
means  of  behavioural  experiments.  The  good  agreement  between  Eq. (4.7) and 
experimental data suggests that this equation may be implemented neurally, a topic 
we address in the following section.

4.4  Neural Encoding and Population Vector Decoding

We next ask how sound source localization in the barn owl is implemented by a 
population of neurons. One approach consists in building a model of the encoding 
process and then decoding the resulting neural activity using a population vector 
(PV). The population vector decoding method was pioneered more than 20 years 

R.W.M. Chan and F. Gabbiani



63

ago in the superior colliculus and motor cortex to decode eye and arm movements 
from experimentally determined neuronal firing rates. Figure 4.3a shows the activ-
ity of ten Poisson neurons with spike rates of 10 spikes/s in a single trial (1 s long). 
For such Poisson neurons, the distribution of the spike count, k, in each 1 s bin has 
the form, 
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Fig. 4.3  Population vector (PV) estimate of sound source. (a) Raster plots of ten Poisson neurons’ 
spike trains with a spike rate of 10 spike/s over a 1 s trial. (b) Histogram of a single Poisson spiking 
neuron’ spike count across 100 trials (1 s long; 10 spike/s). (c) Tuning curves of nine neurons from 
the neural population encoding model. The grey tuning curve has a preferred direction of 0 °  for the 
sound source direction, with a peak firing rate of 10 spike/s. The preferred direction of the popula-
tion is normally distributed around 0 ∘  [see Eq. (4.10)]. (d) Estimated azimuth as a function of true 
(presented) azimuth based on the PV and the probabilistic population code (PPC, see Sect. 4.5). 
The grey crossed curve  represents  the PV estimate while  the grey starred curve represents the 
estimate obtained from the PPC (see Sect. 4.5). The dashed line denotes ideal performance. The 
black circled curve represents the estimate obtained from the PV when the neuron’s firing rates are 
correlated (ρ = 0. 5, Sect. 4.6). Note  that  the bias  towards  central  positions  exhibited by  the PV 
estimate is similar to that obtained from the PPC Bayesian Model (nnetwork.m)
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where λ = 10 is the mean, as well as the variance (Ross 2007). The histogram of 
100  trials  from a single Poisson neuron with a  rate of 10 spikes/s  is shown in 
Fig. 4.3b. To test if such a spike histogram from an unknown distribution can be 
approximated by a Poisson spiking neuron, one can as a first step check if the 
ratio of the spike count variance and its mean is close to one. This ratio is called 
the Fano factor (Gabbiani and Cox 2010).

Sensory neurons change their spiking rate based on the specific external stimuli 
presented to an animal. This change in spike rate can be quantified using a tuning 
curve as shown by the grey area curve in Fig. 4.3c. The horizontal axis is the 
parameter of the stimulus, in our example the sound source direction, while the 
vertical axis is the average firing rate of the neuron responding to that stimulus 
parameter.

For our Poisson neuron, this would correspond to a 0 °  sound source and coin-
cides with the peak firing rate of the neuron. We model the tuning curve with 
the form 
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ITD= = …− − wq s2 22
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 (4.9)

where rmax is the peak firing rate and θn is the nth neuron’s preferred direction. For 
our Poisson neuron, this would be 10 spikes/s and 0 °  respectively. The parameters 
A, ω and σg are the same as in Eq. (4.5); hence, Eq. (4.9) is proportional to Eq. (4.5). 
We shall assume that the population of neurons responsible for sound localization is 
homogeneous except that neurons have varying preferred directions, θn, as shown 
by the black curves in Fig. 4.3c.

The N neurons in the population have preferred direction θn sampled from the 
distribution 
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which is exactly the same as the prior in Eq. (4.6). Using the neuronal population 
vector of the form 
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to decode the estimated sound source direction, we get results shown by the grey 
crossed curve in Fig. 4.3d. In Eq. (4.11), θ is the true sound source, kn is the firing 
rate from a single trial of neuron n  with  tuning  function  given  in  Eq. (4.9) and 
N = 400 is the number of neurons.

Notice that the curve looks strikingly similar to Fig. 4.2d. This is no coincidence, 
as our neural implementation can be shown to converge to the Bayesian estimate as 
the number of neurons N → ∞ (Fischer and Peña 2011). Note also that in Eq. (4.9), 
Asin(ωθ)  is  the  mean  ITD,  according  to  Eq. (4.4). Thus, a simple averaging 
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mechanism is able to account for the behavioural data, based on the firing rate of a 
neuronal population tuned to ITD in a similar manner as barn owl neurons.

4.5  Probabilistic Population Codes

The PV is not the only method for decoding sensory responses from a population 
of neurons. An alternative scheme is based on a probabilistic population code 
(PPC; Ma et al. 2006). The PPC assumes that neuronal populations encode proba-
bility distributions through their joint firing rate tuning curves. As a result, the 
entire tuning curve of the neuronal population and not just the preferred direction 
is used in the decoding process. Let k = …( , , , )k k kN1 2  represent the response in a 
single trial of N neurons to a fixed sound source direction θ. The posterior distribu-
tion has the form 

 
p p p( | ) ( | ) ( ),q q qk k∝

 (4.12)

where p(θ) is the same as in Eq. (4.6) and p(k | θ) is a distribution which models the 
probability of a neuronal response given the stimulus.

If we assume that the neurons representing p(k | θ) are independent and Poisson, 
then the probabilistic population code for the distribution p(k | θ) has the form 
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where kn is the response of neuron n and rn(θ) is its tuning function. We model the 
tuning functions similarly as in Sect. 4.4, rn(θ) = rn(ITD(θ)) using Eqs. (4.9) and (4.3), 
but with a uniform distribution of preferred directions over the unit circle instead of 
being normally distributed. Note that the right-hand side of Eq. (4.13) is formed by 
taking products of Eq. (4.8) with ki replacing k and ri(θ) replacing λ, since we assume 
independent Poisson neurons.

Based on this probabilistic population code, an alternative decision rule to averag-
ing over unit vectors is to pick the azimuth that maximizes the posterior probability. 
This rule is called the maximum a posteriori probability (MAP) rule and has the form 

 
ˆ( ) max ( | ).q qqk k= arg p  

The result of this estimation method based on the probabilistic population code is 
given in Fig. 4.3d as the grey starred curve. It is significantly different from the 
population vector result and does not match the behavioural data very well. On the 
other hand, a probabilistic population code has been successfully used to explain the 
sensory integration of visual and vestibular cues in neurons of the monkey visual 
cortex using a slightly different decoding mechanism (Fetsch et al. 2011).
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4.6  Correlated Tuning Curves

In actual neural networks, the trial by trial firing rates of neurons may be correlated 
with each other (Averbeck et al. 2006, Ecker et al. 2010). To model these correla-
tions, we assume that our N neurons have the same tuning curves and distributions 
of preferred directions as in Eqs. (4.9) and (4.10). In addition, we assume that their 
firing rates on a single trial are drawn from the multinormal probability distribution 
of the form 
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(Anderson 2003). In this equation, r( ) ( ( ), , ( ))ITD ITD ITD= … ′r rN1 is the mean fir-
ing rate of the N neurons given the ITD, and v′ denotes the transpose of vector v. 
The covariance matrix is represented by Σg and its determinant by | Σg | . If the cova-
riance matrix is given by Σg = (Σij), with 

 
Σ ij i j ijr r i j N= = …( ) ( ) , , , , ,ITD ITD d 1

 

and δij = 1 when  i = j, while δij = 0 when  i≠j, we get an uncorrelated multinormal 
distribution. Because each neuron’s firing rate variance is proportional to its mean 
firing rate, this formulation is close to that of Sect. 4.4 using Poisson neurons (mean 
equal to variance). If the covariance matrix elements have the form 

 
Σ ij i j ij ijr r= + −( ) ( )( ( )),ITD ITD d r d1

 
(4.15)

where ρ ∈ [0, 1)  is  the  correlation  coefficient, we have  introduced correlations of 
magnitude ρ into all pairs of neurons’ firing rates.

When  applying  the PV, we  see  no  difference  in  sound  source  estimates  from 
independent neurons. This is illustrated in Fig. 4.3d by the black circled curve, 
which is exactly overlapping with the grey crossed curve obtained from indepen-
dent neurons, in spite of sizable correlations between single neurons’ firing rates 
(ρ = 0. 5). Thus, neuronal correlations do not affect the results exposed in the previ-
ous sections. Intuitively, this may be understood from the fact that the direction of 
the PV will not be changed by correlated noise, if the noise scales uniformly with 
the mean firing rate of the neurons, as implemented by Eq. (4.15). In conclusion, 
Bayesian statistical modelling is a computational analysis technique that can  
provide insight in the coding of sensory information from a neuroethological per-
spective, as illustrated in this chapter.
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