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2
Rate Coding and Signal Processing3

4 Fabrizio Gabbiani

5 Introduction

6 In the peripheral and central nervous system, many neurons encode
7 information and pass it on to other neurons by generating irregular
8 sequences of short voltage pulses, typically less than 1 ms in du-
9 ration, called action potentials. The shape of these action potentials,
10 or spikes, is usually quite stereotyped over the course of time. The
11 sequence of spike occurrence times generated by the cell, often
12 called the spike train, is therefore thought to carry most of the
13 information that a neuron communicates to its targets. When study-
14 ing how sensory information might be encoded in neuronal spike
15 trains, one is faced with the fact that spike trains are often quite
16 variable under seemingly identical stimulation conditions (Figure
17 1). Is this variability simply noise, perhaps due to uncontrolled
18 changes in the state of some internal variable, or does it carry
19 information about the stimulus? Answering this question in a par-
20 ticular case would require a thorough knowledge of the biophysical
21 mechanisms of spike generation and of stimulus coding—
22 knowledge that is out of reach at present.
23 Although no universal definition exists, the term rate coding is
24 applied in situations where the precise timing of spikes is not
25 thought to play a significant role in carrying sensory information.
26 Rate codes have been identified in many sensory systems and are
27 probably the best understood means by which neurons encode in-
28 formation. In many cases, rate codes have been shown to play an
29 important role in determining behavioral responses of animals.
30 Rate coding comes in two flavors: mean firing rate codes and
31 instantaneous firing rate codes. The sensory information conveyed
32 by these two types of codes can be studied rigorously by applying
33 classical methods of statistical signal processing borrowed from
34 the engineering literature. In the next two sections, we will show
35 how these methods can be carried over to the analysis of neuronal
36 spike trains. Before turning to more general examples in the third
37 section, we will illustrate them in the case of electrical field
38 amplitude–sensitive neurons of weakly electric fishes. These ani-
39 mals possess an unusual sense for the electrical properties of their
40 environment that is favorable to computational investigations (see
41 ELECTROLOCATION).
42 Rate coding is not the only mean by which neurons convey in-
43 formation. In weakly electric fishes and in other auditory-like sen-
44 sory systems, the role played by spike timing information is well
45 documented (see ELECTROLOCATION and ECHOLOCATION: COCH-
46 LEOTOPIC AND COMPUTATIONAL MAPS). Two articles address the
47 issue of spike timing in cortical circuits (SYNFIRE CHAINS; SYN-
48 CHRONIZATION: BINDING AND EXPECTANCY). Finally, the role of
49 rate coding in the context of neuronal populations is examined in
50 POPULATION CODES and MOTOR CORTEX, CODING AND DECODING

51 OF DIRECTIONAL OPERATIONS.

52 Mean Firing Rate Coding

53 An increase in firing rate is typically the most conspicuous change
54 recorded from sensory neurons in response to external stimuli. It
55 is therefore natural to ask how well the spike count observed in a
56 single trial from such a cell can predict the presence of the stimulus.
57 Let us take the example of a neuron having a mean spontaneous
58 rate k̄0 � 30 spk/s that fires at a rate of k̄s � 50 spk/s under
59 stimulus presentation (Figure 1B). We will first assume for sim-
60 plicity that spikes are generated completely independently of each
61 other (i.e., following a Poisson process) and thus do not carry any
62 additional information beyond their mean rate of occurrence.
63 Figure 2A illustrates the distribution of spike counts observed
64 during a 200 ms window in the baseline and stimulus condition for
65 this model neuron. The overlap between these two distributions
66 indicates that guessing the presence of the stimulus from the spike
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67 count observed in a single trial will lead to a significant fraction of
68 errors. A simple method to decide between the two alternatives
69 “stimulus present” or “no stimulus” consists in choosing a thresh-
70 old number of spikes, kthres, and classifying the observed responses,
71 n, as baseline activity or stimulus-induced activity according to
72 whether the threshold is exceeded or not:

73 n � k ⇒ baseline activitythres

n � k ⇒ stimulus present (1)thres74

75 This decision strategy leads to two types of errors. On the one
76 hand, we might call for the stimulus to be present in a trial during
77 which spontaneous activity was unusually high. This type of error
78 is called a false alarm. On the other hand, we might confuse an
79 unusually low stimulus response with spontaneous activity, an error
80 called a false miss. Clearly, the proportion of false alarms to false
81 misses depends on the choice of the threshold kthres: high (low)
82 threshold values correspond to low (high) probabilities of false
83 alarms with higher (lower) fractions of false misses. It is customary
84 to characterize the performance of this detection algorithm by vary-
85 ing the threshold from low to high values and plotting the proba-
86 bility of correct detection, pD (i.e., 1 minus the probability of false
87 misses), as a function of the probability of false alarms, pFA (i.e.,
88 1 minus the probability of correct rejections; Figure 2B).
89 This curve is called the receiver operating characteristic (ROC)
90 curve of the detection algorithm (a term originating from early
91 applications to radar observations). The dashed diagonal line pD �
92 pFA corresponds to chance performance (i.e., independent of the
93 threshold, kthres, the probability, pD, of correctly detecting the stim-
94 ulus is as good as the probability, pFA, of incorrectly mistaking
95 spontaneous activity with stimulus-induced activity). Thus, the
96 higher the ROC curve lies above the diagonal, the better the per-
97 formance of our detection algorithm and, in the limit of perfect
98 performance, pD � 1 over the entire interval 0 � pFA � 1.
99 From the ROC curve, one can obtain the values of pFA and
100 pD( pFA) that minimize the overall probability of stimulus detection
101 error (comprising both false alarms and false misses). If the stim-
102 ulus is presented on average in one-half of the trials, the error rate
103 is given, for a fixed value of pFA, by

104 1 1
e(p ) � p � (1 � p (p )) (2)FA FA D FA2 2105

106 The minimum of e(pFA) as a function of pFA can be easily found
107 by numerical methods (see Figure 2C). The corresponding thresh-
108 old kthres may then be obtained from pFA(kthres). Thus, in our ex-
109 ample the minimal error rate e � 0.24 is achieved for pFA � 0.26,
110 corresponding to a detection threshold kthres of 8.5 spk/s.
111 One important question remains: Given the simplicity of this
112 algorithm, could it be outperformed by a more sophisticated one?
113 Remarkably, this is not the case: under fairly general assumptions,
114 the threshold condition of Equation 1 is equivalent to a similar
115 condition on the likelihood ratio, l(n) � ps(n)/p0(n), where ps(•)
116 and p0(•) are the probability distributions of the spike count in the
117 presence and absence of the stimulus, respectively (Figure 2A). The
118 likelihood ratio is a quantity central to signal detection theory, and
119 this equivalence shows that, for a fixed value of pFA, no other al-
120 gorithm taking into account only the probability distributions of
121 Figure 2A can outperform the threshold test. Thus, the ROC curve
122 defines the performance of an ideal observer of the mean rate code,
123 having complete access to p0(•) and ps(•). Whether neurons or neu-
124 ronal networks in the brain adopt similar algorithms to read out
125 information about the external world remains an open question.
126 The performance of the ideal observer algorithm will be affected
127 by at least two additional factors, the first being the length of the
128 time window over which spikes are registered. Longer windows
129 typically lead to better performance by averaging out the noise
130 component of the spike rate that causes deviations from the mean.
131 In the case of the Poisson process discussed above, for a fixed mean
132 firing rate k̄, the mean number of spikes observed in a time window
133 T is given by n̄ � k̄T, whereas the standard deviation is r �
134 Thus, n̄/r � , and the signal grows as with respect tok̄T. T T� � �
135 noise over the course of time. Currently, the time interval that is
136 relevant for behavioral responses often is only weakly constrained
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137 by experimental observations.
138 The second factor is the regularity of the spike train or, in other
139 words, the amount of noise that is present to start with. While many
140 neurons in cortical areas have highly variable responses resembling
141 those obtained from Poisson processes, other neurons can be much
142 more regular. In the weakly electric fish Apteronotus, for example,
143 the spike trains of primary sensory afferent neurons sensitive to
144 amplitude modulations of the electrical field have a variability that
145 is almost an order of magnitude smaller than that expected from a
146 Poisson spike train on behaviorally relevant time scales (Ratnam
147 and Nelson, 2000). These neurons are thought to encode informa-
148 tion necessary for the detection of small prey, such as the water
149 fleas on which the fish feeds. Computer simulations, behavioral
150 observations, and electrophysiological recordings suggest that the
151 firing rate of these cells will increase by only a few spikes per
152 second during the 200 ms needed to detect the prey. An ROC
153 analysis reveals that increases of 2–3 spk/s above baseline activity
154 can be detected with greater than 90% accuracy even if the prob-
155 ability of a false alarm is very low, 0.1% (Figure 2D). Such low
156 false alarm rates (pFA � 0.001) are constrained from behavioral
157 observations showing that fishes almost never strike a nonexistent
158 prey. As illustrated in Figure 2D, three spike trains of models de-
159 signed to reproduce the short-term variability of the experimental
160 spike trains cannot reproduce these results. The first model
161 (squares) reproduces only the mean firing rate of the afferents,
162 while the second and third models also reproduce the interspike
163 interval distribution (diamonds) or the joint statistical distribution
164 of two successive interspike intervals (triangles), respectively. The
165 regularity and statistical structure of the spike trains over at least
166 three firing cycles is therefore responsible for this unusually low
167 detection threshold.

168 Instantaneous Rate Coding

169 Stimuli that vary on a fast time scale—comparable to the 200 ms
170 observation window introduced in the last section—cannot be en-
171 coded by the mean spike count alone. Such stimuli are ubiquitous
172 in the sensory environment of many animals. Motion of an object
173 or self-motion, for example, result in rapid changes in light inten-
174 sity across the visual field. Sound stimuli used for communication
175 or localization correspond to rapidly varying changes in air pres-
176 sure. In the case of weakly electric fishes considered in the last
177 section, time-varying electrical field amplitude modulations occur
178 as the fish moves through an electrically dense environment in
179 water.
180 Such time-varying stimuli could be encoded by time-varying
181 changes in the instantaneous firing rate of a neuron, even if the
182 precise timing of spikes does not play an essential role in the pro-
183 cess (Gabbiani and Koch, 1999). Consider, for example, the Pois-
184 son spike train model of the previous section with a spontaneous
185 rate k̄ � 30 spk/s. We assume that changes in the instantaneous
186 firing rate from its mean value, k̄, are caused by changes of the
187 stimulus, s(t), from its mean value, s̄,

188 ¯k(t) � �(s(t) � s̄) � k (3)189

190 The constant � is a conversion factor between stimulus and firing
191 rate, and k(t) is assumed to be positive. In the following discussion
192 the stimulus will usually be assumed to have zero mean, i.e., s̄ � 0.
193 How much information does such a spike train convey about the
194 stimulus? Using an approach analogous to that introduced in the
195 last section, this question can be addressed by presenting a random
196 stimulus s(t) and estimating it from the spike train (Figure 3A).
197 Because s(t) varies randomly in time, the estimate sest(t) will also
198 have to vary in time to track s(t). Thus, this estimation problem is
199 more complex than the detection problem considered in the last
200 section. It is customary to minimize the root mean square error
201 between the stimulus and its estimate,
202 2 1/2e � �(s(t) � s (t)) � (4)est203

204 where the average is taken over the stimulus presentation interval
205 (Figure 3A). It is much more difficult to find an optimal estimate
206 sest(t) from the spike train than it is to find an optimal classification
207 strategy based on the spike count. A simplification is therefore
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208 made by looking only at estimates obtained from linear superpos-
209 itions of a waveform, h(t), around each spike. If r(t) � �id(t � ti)
210 is a sum of delta functions representing the sequence of spikes at
211 times {ti}, the estimated stimulus is assumed to be of the form

212 s (h, t) � h(t � t )r(t )dt � r̄ h(t )dtest 0 0 0 0 0� �
� h(t � t ) � r̄ h(t )dt (5)� i 0 0�

i213

214 where r̄ is the mean firing rate of the cell and the second term
215 ensures that sest(t) has zero mean value, as was assumed for s(t)
216 (Figure 3B). Under this assumption, the optimal waveform, h(t),
217 minimizing the root mean square error in Equation 4 can be ob-
218 tained by standard statistical and Fourier transform techniques. The
219 minimum value obtained for the root mean square error, e, is usu-
220 ally normalized by the stimulus standard deviation, r, which cor-
221 responds to chance guessing (i.e., to the error obtained in Equation
222 4 when sest(t) � s̄ � 0). Figure 3C illustrates the result of this
223 estimation procedure using the spike train of an amplitude-sensitive
224 afferent obtained in response to a random electrical field amplitude
225 modulation in a second species of weakly electric fishes, Eigen-
226 mannia. From the spike train, the amplitude modulation could be
227 estimated with an error e/r � 0.17. Equivalently, our ideal linear
228 observer could reproduce 83% of the stimulus standard deviation
229 using a single spike train.
230 In contrast, estimation of the same stimulus using a spike train
231 generated using a Poisson process and Equation 3 is considerably
232 less accurate (only 25% of the stimulus standard deviation is re-
233 covered; Figure 3D), because a Poisson process is more variable
234 than the spiking of Eigenmannia afferents (Kreiman et al., 2000).
235 Thus, as in the signal detection case, spike train variability plays
236 an important role in stimulus estimation. Other factors that play a
237 significant role in the encoding capacity of the instantaneous firing
238 rate are the contrast of the stimulus (or its standard deviation r;
239 typically, higher contrasts result in larger firing rate modulations
240 and thus better encoding), the mean firing rate of the cell (higher
241 mean firing rates lead to a finer temporal sampling of the stimulus),
242 and the cutoff frequency of the stimulus (accurate encoding is pos-
243 sible only when temporal stimulus frequencies are well below the
244 mean firing rate of the cell).
245 The assumption relating spike train and stimulus estimate by a
246 linear transform embodied in Equation 5 works very well in prac-
247 tice when the encoding of the stimulus by the spike train can be
248 described by equations analogous to Equation 3. This result can be
249 justified theoretically (Gabbiani and Koch, 1999). In contrast, no
250 systematic studies have been carried out on the effect of nonlinear
251 relations between stimulus and firing rate; only a few scattered
252 examples have been examined (Gabbiani and Koch, 1999; Haag
253 and Borst, 1998).

254 Rate Coding in Neural Systems

255 Instantaneous and mean firing rate codes have been extensively
256 characterized in a variety of different neuronal systems. In the fol-
257 lowing discussion, we will highlight a few directions of investi-
258 gation and some open questions relevant to the subject.
259 Starting in the late 1940s, signal detection methods have been
260 applied to characterize the information conveyed by neuronal spike
261 trains, along the lines prescribed earlier in this article (see Parker
262 and Newsome, 1998). The investigation of neuronal signals carried
263 by optic nerve fibers of the horseshoe crab Limulus was one of the
264 earliest examples of work on this topic (see Parker and Newsome,
265 1998). Over the next 30 years, signal detection methods were ex-
266 tended to the activity of sensory neurons in the early auditory,
267 somatosensory, and visual pathways of vertebrates. The variability
268 of retinal ganglion cell spike trains, for example, has been exten-
269 sively investigated in an attempt to explain its impact on the en-
270 coding reliability of visual signals (Parker and Newsome, 1998).
271 More recently, signal detection methods have been applied to
272 neurons in cerebral cortical areas (visual and somatosensory, for
273 instance) of monkeys trained to perform discrimination tasks. In
274 some cases, the reliability of neuronal firing could be compared to
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275 the behavioral accuracy of the animal performing the task. These
276 results, together with analyses of variability and correlation across
277 cells, have led to neural models of signal encoding that can account
278 for the animal’s behavior (see Parker and Newsome, 1998). The
279 neural mechanisms underlying behavioral selection in those dis-
280 crimination tasks, however, remain difficult to test experimentally.
281 In the cockroach, directional escape responses to wind stimuli
282 are thought to rely on the mean firing rate of 14 giant interneurons
283 (GIs). Several models that could in principle explain escape be-
284 haviors on the basis of the mean firing rate of GIs have been tested
285 by directly manipulating them through current injections (Levi and
286 Camhi, 2000). The results of these experiments suggest that a di-
287 rectional average of the GIs’ mean firing rate is the most accurate
288 description of the behavior. Mean firing rate codes across popula-
289 tion of neurons have also been shown to play similar roles in ver-
290 tebrate neurons, in the generation of visual saccades in the superior
291 colliculus of monkeys, and in the generation of limb movements
292 in motor cortical areas (Sparks, Kristan, and Shaw, 1997).
293 Given that in the engineering literature signal estimation is usu-
294 ally considered a close relative of signal detection (Poor, 1994), it
295 is perhaps surprising that it has been applied to neural spike trains
296 only within the past 10 years. Estimation of time-varying stimuli
297 along the lines developed earlier in this article has shown that single
298 spike trains of sensory neurons can accurately convey information
299 about time-varying stimuli, although the results are usually less
300 spectacular than those shown in Figure 3B (Borst and Theunissen,
301 1999). At present, these methods have been applied mainly to in-
302 vertebrate and lower vertebrate preparations. Mechanisms of en-
303 coding across multiple neurons and their relation to behavior have
304 received little attention so far (but see Stanley, Li, and Dan, 1999).
305 In contrast, instantaneous firing rate codes have been extensively
306 studied by characterizing how stimulus attributes are encoded in
307 the instantaneous firing rate of neurons through generalizations of
308 Equation 3. Such models are particularly well developed for the
309 early visual pathways of mammals, from the retina to early visual
310 cortical areas (Dayan and Abbott, 2001).

311 Discussion

312 Mean and instantaneous firing rate codes are undoubtedly the best
313 documented and best understood way by which neurons transmit
314 information. Several other codes have also been studied, among
315 them the mechanisms of coincidence detection in auditory pro-
316 cessing (Pena and Konishi, 2001). More elaborate coding schemes
317 are likely to be found, particularly across populations of neurons,
318 although the highly sophisticated codes at the heart of information
319 theory seem unlikely to find a place in describing the signaling
320 repertoire of sensory and motor neurons.
321 One question that has long intriguied neuroscientists is whether
322 the spike train variability usually observed in neurons using rate
323 coding also carries further sensory information (Bullock, 1970).
324 This question is difficult to answer rigorously. In the case of the
325 cockroach, the pattern of spikes in GIs does not appear to play a
326 role in determining escape behaviors (Liebenthal, Uhlmann, and
327 Camhi, 1994). On the other hand, it has been suggested that in
328 electric fishes, coincidence detection could be used to integrate the
329 information conveyed by the amplitude-sensitive receptors de-
330 scribed in this article and in Berman and Maler (1999). Thus, neu-
331 rons might use a combination of different codes simultaneously at
332 different levels of a neuronal circuit.

333 Roadmap: Neural Coding
334 Related Reading: Population Codes; Spansory Coding and Information
335 Transmission
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382

383
384 Figure 1. A, Nine spike trains recorded from an amplitude-sensitive afferent in the weakly electric fish Eigenmannia in response to repeated presentations
385 of the same random electrical field amplitude modulation (shown on top). (Adapted from Kreiman et al., 2001.) B, Ten spike trains (200 ms long) obtained
386 from a Poisson process with mean firing rate k0 � 30 spk/s (spontaneous rate, left) and ks � 50 spk/s (stimulus-induced rate, right).387388
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391
Figure 2. A, Probability distributions of the spike count
observed in a 200 ms window for the two Poisson pro-
cesses illustrated in Figure 1B. Choosing a threshold
number of spikes (kthres) to discriminate between the
presence or absence of the stimulus leads to errors be-
cause of the overlap of the distributions. The probability
of false alarm (pFA) and of correct detection ( pD) are
illustrated by the gray and hatched areas, respectively.
B, Plot of pD versus pFA, called an ROC curve. Different
thresholds will correspond to different values of pD and
pFA (dashed double arrows in A and B). C, Overall prob-
ability of error (see Equation 2), computed from the
ROC curve in B. D, Probability of correct detection ob-
tained from the spike trains of an amplitude-sensitive
afferent neuron as a function of the number of spikes
above spontaneous activity generated by the cell (cir-
cles). Note that the cell can discriminate with more than
90% accuracy increases of three spikes or more, corre-
sponding to a 1% increase in firing rate. Different models
that take into account only the mean firing rate (squares),
the mean firing rate and the interspike interval distribu-
tion (diamonds), or in addition the joint properties of
successive intervals (triangles) are unable to match the
experimental performance. (Adapted from Ratnam and
Nelson, 2000.)

392393
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395

396
397 Figure 3. A, Stimulus estimation is performed using a linear algorithm (see B) that is based on a comparison of the stimulus and its estimate aimed at
398 minimizing the mean square error between the two (Equation 4). B, The linear algorithm consists in taking a spike train (left) and placing a waveform (right)
399 around each spike. Linear superposition of these waveforms (bottom) yields the estimate. The waveform is chosen to minimize the mean square error between
400 stimulus and estimate (see A). C, Estimation of a random amplitude modulation from the spike train of an amplitude sensitive afferent neuron in Eigenmannia
401 (mean firing rate 314 spk/s). D, Same stimulus estimated from a Poisson spike train encoding the stimulus according to Equation 3 at the same mean firing
402 rate as in C.
404


